DOI QR코드

DOI QR Code

Development of piezoelectric immunosensor for the rapid detection of marine derived pathogenic bacteria, Vibrio vulnificus

  • Hong, Suhee (Department of Marine Biotechnology, Gangneung Wonju National University) ;
  • Jeong, Hyun-Do (Department of Aquatic Life Medicine, Pukyong National University)
  • 투고 : 2014.07.21
  • 심사 : 2014.08.13
  • 발행 : 2014.08.30

초록

Biosensors consist of biochemical recognition agents like antibodies immobilized on the surfaces of transducers that change the recognition into a measurable electronic signal. Here we report a piezoelectric immunosensor made to detect Vibrio vulnificus. A 9MHz AT-cut piezoelectric wafer attached with two gold electrodes of 5mm diameter was used as the transducer of the QCM biosensor with a reproducibility of ${\pm}0.1Hz$ in frequency response. We have tried different approaches to immobilize antibody on the sensor chip. Concerning the orientation of antibody for the best antigen binding capacity, the antibody was immobilized by specific binding to protein G or by cross-linking through hydrazine. In addition, protein G was cross-linked on glutaraldehyde activated immine layer (PEI) or EDC/NHS activated sulfide monolayer (MPA). PEI was found to be more effective to immobilize protein G following glutaraldehyde activation than MPA. However, hydrazine chip showed a better capability to immobilize more IgG than protein G chip and a higher sensitivity. The sensor system was able to detect V. vulnificus in dose dependent manner and was able to detect bacterial cells within 5 minutes by monitoring frequency shifts in real time. The detection limit can be improved by preincubation to enrich the bacterial cell number.

키워드

참고문헌

  1. Absolom, D.,R., Zingg, W. and Neumann, A. W. Protein adsorption to polymer particles: role of surface properties. J. Biomed. Mater. Res. 21: 161-171, 1987. https://doi.org/10.1002/jbm.820210202
  2. Attili, B. S. and Suleiman, A. A. A piezoelectric immunosensor for the detection of cortisol. Anal. Lett. 28: 2149-2159, 1995. https://doi.org/10.1080/00032719508000035
  3. Bao, L., Deng, L., Nie, L., Yao, S., Wei, W., Determination of microorganisms with a quartz crystal microbalance sensor. Anal. Chim. Acta 319: 97-101, 1996. https://doi.org/10.1016/0003-2670(95)00466-1
  4. Ben-Dov, I., Willner, I., Zisman, E., Piezoelectric immunosensors for urine specimens of Chlamydia-Trachomatis emploting quartz-crystal microbalance microgravimetric analyses. Anal. Chem. 69(17): 3506-3512, 1997. https://doi.org/10.1021/ac970216s
  5. Boveniser, J. S., Jacobs, M. B., Guilbault, G. G. and O'Sullivan, C. K. The detection of Pseudomonas aeruginosa using the quartz crystal microbalance. Anal. Lett., 31: 1287-1295, 1998. https://doi.org/10.1080/00032719808002866
  6. Bunde, R. L., Jarvi, E. J. and Rosentreter, J. J. Piezoelectric quartz crystal biosensors. Talanta, 46, pp. 1223-1236, 1998. https://doi.org/10.1016/S0039-9140(97)00392-5
  7. Clark, D. J., Blake-Coleman, B. C., and Calder, M. R. Principles and potential of piezo-electric transducers and acoustical techniques, in Biosensors : fundamentals and Application(Turner, A. P. F., Karube, I., and Wilson, G.S., eds.), Oxford University press, Oxford, pp 551-571, 1987.
  8. Guilbault, G. G., Hock, B. and Schmid, R. A Piezoelectric Immunobiosensor for Atrazine in Drinking Water" Biosensors Bioelectronics 7: 411-420, 1992. https://doi.org/10.1016/0956-5663(92)85040-H
  9. Horisberger, M. and Vauthey, M. Labelling of colloidal gold with protein a quantitative study using ${\beta}$-lactoglobulin, Histochemistry 80(1): 13-19, 1984. https://doi.org/10.1007/BF00492765
  10. Koenig, B., Gratzel, M., Detection of viruses and bacteria with piezoelectric immunosensors. Anal. Lett. 26(8): 1567-1585, 1993b. https://doi.org/10.1080/00032719308021481
  11. Koening, B., Gratzel, M. Detection of human T-Lymphocytes with a Piezoelectric immunosensor Anal. Chim. Acta 281: 13-18, 1993a. https://doi.org/10.1016/0003-2670(93)85334-G
  12. Konig, B. and Gratzel, M. Human granulocytes detected with a piezoimmunosensor. Anal. Letters 26(11): 2313-2328, 1993. https://doi.org/10.1080/00032719308017472
  13. Konig, B. and Gratzel, M. A novel immunosensor for herpes viruses, Anal. Chem. 66: 341, 1994. https://doi.org/10.1021/ac00075a005
  14. Lin, Z., Yip, C. M., Joseph, I. S. and Ward, M. D. Operation of an Ultrasensitive 30-MHz Quartz Crystal Microbalance in Liquids, Anal. Chem. 65: 1546-1551, 1993. https://doi.org/10.1021/ac00059a011
  15. Matsumura, H. and Kleijn, J. M. Admittance measurements on protein layers adsorbed at the Pt/solution interface: effect of d.c. potential and a.c. field. Colloids and surfaces. B, Biointerfaces, 277-282, 1993.
  16. Minunni, M., Mascini, M., Guilbault, G. G. and Hock, B. The Quartz Crystal Microbalance as Biosensor. A Status Report.; Anal. Letters, 28: 749-764, 1995. https://doi.org/10.1080/00032719508001422
  17. Muramatsu, H., Dicks, J. M., Tamia, E. and Karube, I. Piezoelectric Crystal Biosensor Modified with Protein A for Determination of Immunoglobulins. Analytical Chemistry, 59: 2760-2763, 1987. https://doi.org/10.1021/ac00150a007
  18. Muramatsu, H., Kajiwara, K., Tamiya, E., Karube, I. Piezoelectric immunosensor for the detection of Candida albicans microbes. Anal. Chim. Acta 188: 257-261, 1986. https://doi.org/10.1016/S0003-2670(00)86049-3
  19. Plomer, M., Guilbault, G.G., Hock, B. Development of a piezoelectric immunosensor for the detection of Enterobacteria. Enzyme Microb. Technol. 14: 230-235, 1992. https://doi.org/10.1016/0141-0229(92)90071-U
  20. Prusak-Sochaczewski E, Luong, J. H. and Guilbault, G. G. Development of a piezoelectric immunosensor for the detection of Salmonella typhimurium. Enzyme Microb Technol., 12(3): 173-177, 1990. https://doi.org/10.1016/0141-0229(90)90034-N
  21. Shons, A., Dorman and F. Najarian, J. An immunospecific microbalance, J. Biomed. Mater. Res., 6: 565-570, 1972. https://doi.org/10.1002/jbm.820060608
  22. Skladal, P., Minunni, M., Mascini, M., Kolar, V., and Franek, M. Characterization of Monoclonal-Antibodies to 2,4-Dichlorophenoxyacetic Acid Using A Piezoelectric Quartz-Crystal Microbalance in Solution. J. Immunol. Methods 176: 117-125, 1994. https://doi.org/10.1016/0022-1759(94)90356-5
  23. Sjobring, U., Bjork, L., and Kastern, W. Streptoccocal protein G: gene structure and protein binding properties. J. Biol. Chem., 266(1): 399-405, 1991.
  24. Steegborn, C. and Skladal, P. Construction and characterisation of the direct piezoelectric immunosensor for atrazine operating in solution. Biosens. Bioelectron, 12, 19-27, 1997. https://doi.org/10.1016/0956-5663(96)89086-5
  25. Uttenthaler, E., Kosslinger, C. and Drost, S. Characterization of immobilization methods for African swine fever virus protein and antibodies with a piezoelectric immunosensor. Biosens. Bioelectron., 13: 1279-1286, 1998. https://doi.org/10.1016/S0956-5663(98)00089-X
  26. Vikholm, I., Viitala, T., Albers, W. M. and Peltonen, J. Highly efficient immobilisation of antibody fragments to functionalised lipid monolayers, Biochim. Biophys. Acta., 1421: 39-52, 1999. https://doi.org/10.1016/S0005-2736(99)00112-1