DOI QR코드

DOI QR Code

Geometry Design of a Pitch Controlling Type Horizontal Axis Turbine and Comparison of Power Coefficients

피치각 제어형 수평축 조류 터빈의 형상설계 및 출력계수 비교

  • Park, Hoon Cheol (Department of Advanced Technology Fusion, Konkuk University) ;
  • Truong, Quang-Tri (Faculty of Applied Science, HoChiMihn City University of Technology) ;
  • Phan, Le-Quang (Department of Advanced Technology Fusion, Konkuk University) ;
  • Ko, Jin Hwan (Korea Institute of Ocean Science & Technology) ;
  • Lee, Kwang-Soo (Korea Institute of Ocean Science & Technology) ;
  • Le, Tuyen Quang (Institute of High Performance Computing) ;
  • Kang, Taesam (Department of Aerospace Information Engineering, Konkuk University)
  • Received : 2014.04.01
  • Accepted : 2014.06.11
  • Published : 2014.08.25

Abstract

In this work, based on the blade element-momentum theory (BEMT), we proposed the geometry of a lab-scale horizontal axis tidal turbine with a diameter of 80cm, which can demonstrate the maximum power coefficient, and investigated the effect of blade pitch angle increase on the power coefficient. For validation of the computed power coefficients by the BEMT, we also computed the power coefficient using the computational fluid dynamics (CFD) for each case. For the CFD, 15 times of the turbine radius was used for the length and diameter of the computational domain, and the open boundary condition was prescribed at the boundary of the computational domain. The maximum power coefficients of the turbine acquired by the BEMT and CFD were about 48%, showing a good agreement. Both of the power coefficients computed by the BEMT and CFD tended to decrease when the blade pitch angle increases. The two power coefficients for a given tip-speed ratio were in good agreement. Through the present study, we have confirmed that we can trust the proposed geometry and the computed power coefficients based on the BEMT.

본 연구에서는, 블레이드 요소-모멘텀 이론을 바탕으로, 최대 출력계수를 갖는 직경 80 cm의 실험실용 수평축 조류 터빈의 형상을 제시하고, 블레이드 피치각이 변할 때 출력계수의 변화 경향을 조사하였다. 또한 ANSYS-Fluent를 이용한 전산유체해석을 실시하여, 주어진 블레이드 피치각에 대하여 블레이드 요소-모멘텀 이론으로 계산한 출력계수를 검증하였다. 전산유체해석에는 계산 영역의 직경과 길이를 조류 터빈 반경의 15배로 하였고, 계산 영역의 경계에는 열린 경계조건을 인가하였다. 블레이드 요소-모멘텀 이론과 전산유체해석으로 계산한 조류 터빈의 최대 출력계수 약 48%로 서로 잘 일치하였다. 블레이드 피치각을 증가한 경우에는 두 방법으로 산출한 출력계수가 모두 감소하는 경향을 보였고, 그 값들도 서로 유사하였다. 이로부터, 블레이드 요소-모멘텀 이론을 기반으로 설계한 조류 터빈 형상 및 다양한 조건에서 대한 출력계수의 신뢰성을 확인하였다.

Keywords

References

  1. Batten, W.M.J, Bahaj, A.S., Molland, A.F. and Chaplin, J.R., 2008, "The prediction of the hydrodynamic performance of marine current turbines", Renewable Energy, Vol. 33, pp. 1085-1096. https://doi.org/10.1016/j.renene.2007.05.043
  2. Rourk, F.O., Boyle, F. and Reynolds, A, 2010, "Tidal energy update 2009", Applied Energy, Vol. 87, pp. 398-409. https://doi.org/10.1016/j.apenergy.2009.08.014
  3. Boyle, F., 2001, Renewable Energy, Oxford University Press.
  4. Han, J. S., Choi, D.-H., Hyun, B.-S., Kim, M.-C., Rhee, S.-H. and Song, M., 2011, "Parametric Numerical Study on the Performance of Helical Tidal Stream Turbines", Journal of the Korean Society for Marine Environmental Engineering, Vol. 14, No. 2, pp.114-120. https://doi.org/10.7846/JKOSMEE.2011.14.2.114
  5. Platzer, M.F., Asshraf, M.A., Young, J., and Lai, J.C.S., 2010, "Extracting power in jet streams: pushing the performance of flapping wing technology", Proceedings of the 27th International Congress of the Aeronautical Sciences.
  6. Yang, C.-J., 2011, "Optimal Rotor Blade Design for Tidal Instream Energy", Journal of the Korean Society of Marine Environment & Safety, Vol. 17, No. 1 pp. 75-82.
  7. Lee, J.H., Park, S., Kim, D.H., Rhee, S.H., Kim, M.C., 2012, "Computational methods for performance analysis of horizontal axis tidal stream turbines", Applied Energy, Vol. 98, pp. 512-523. https://doi.org/10.1016/j.apenergy.2012.04.018
  8. Kim, M.-C., Shin, B.-C., Lee, J.-H., Rhee, S.-H., Hyun, B.-S. and Namm J.-H., 2010, "Comparative Study on Horizontal Axis Turbine (HAT) Impeller Design", Journal of the Korean Society for Marine Environmental Engineering, Vol. 13, No. 2, pp.105-111.
  9. Shin, B.-C., Kim, M.-C., Do, I.-R., Rhee, S.-H., Hyun, B.-S. and Song, M.-S., 2010, "A Numerical Study on Tip Rake HAT Impeller Performance for Tidal Stream Power", Journal of the Korean Society for Marine Environmental Engineering, Vol. 13, No. 2, pp.263-269.
  10. Kim B.-G., Yang, C.-H., Choi, M.-S., 2012, "A Study on the Performance of an 100 kW Class Tidal Current Turbine", Journal of the Korean Society of Marine Environment & Safety, Vo. 18, No. 2, pp.145-152. https://doi.org/10.7837/kosomes.2012.18.2.145
  11. Do, I.-R., Kim, M.-C., Lee, S.-K. and Hyun, B.-S., 2011, "Study on Power Measurement and Comparison of Marine Current Turbine in a Towing Tank", Journal of the Korean Society for Marine Environmental Engineering, Vol. 14, No. 4, pp.230-238. https://doi.org/10.7846/JKOSMEE.2011.14.4.230
  12. Ingram, G., 2005, "Wind turbine blade analysis using the blade element momentum theory method. Version 1.1", Durham University.
  13. O'Doherty, T., Mason-Jones, A., O'Doherty, D.M., Byrne, C.B., Owen, I. and Wang, Y.X., 2009, "Experimental and computational analysis of a model horizontal axis tidal turbine", Proceedings of the 8th European Wave and Tidal Energy Conference, Uppsala, Sweden.
  14. Wright, T., 1999, Fluid Machinery: Performance, Analysis and Design, Florida: CRC Press.