DOI QR코드

DOI QR Code

Game Theoretic Approach for Energy Efficient Rate Scheduling on the interference channel

간섭채널에서 에너지 효율적인 전송률 스케줄링을 위한 게임이론적 접근

  • Oh, Chang-Yoon (Dept. of Information and Communication Engineering, Inha Technical College)
  • 오창윤 (인하공업전문대학 정보통신과)
  • Received : 2014.05.16
  • Accepted : 2014.08.01
  • Published : 2014.08.30

Abstract

A game theoretic approach is applied for studying the energy efficient rate scheduling. The individual utility function is defined first. Then, a non cooperative rate game is modeled in which each user decides the transmission rate to maximize its own utility. The utility function considered here is the consumed energy for the individual user's data transmissions. In particular, using the fact that the utility function is convex, we prove the existence of Nash Equilibrium in the energy efficient rate scheduling problem at hand. Accordingly, a non cooperative scheduling algorithm is provided. For better energy efficiency, the sum of the individual user's utility function is optimized Finally, the convergence analysis and numerical results to show the energy efficiency of the proposed algorithms are provided.

게임이론을 적용하여 에너지 효율적인 전송률 스케줄링 방안을 제안한다. 먼저, 개별 단말의 효용함수를 정의하고, 효용함수를 최적화하도록 에너지를 결정하는 비협력적 전송률 게임을 모델링한다. 여기서, 효용함수는 개별 단말이 데이터 전송시 소모하는 전송 에너지이다. 특히, 개별 단말의 효용함수가 Convex 함수임을 이용하여 에너지 효율적인 전송률 스케줄링 문제가 나쉬 평형이 존재함을 증명하고, 이를 기반으로 비협력적 스케줄링 알고리즘을 제안한다. 또한, 에너지 효율의 개선을 위해서 개별 단말의 효용함수의 합을 최적화하는 협력적 스케줄링 알고리즘도 제안한다. 성능 분석을 위하여 비협력적 알고리즘과 협력적 알고리즘의 수렴도 결과와 에너지 효율성 결과를 제시한다.

Keywords

References

  1. Z. Hasan et al., "Green Cellular Networks: A Survey, Some Research Issues and Challenges," IEEE Communications Surveys & Tutorials, vol. 13, no. 4, p534-540, Fourth Quarter 2011.
  2. E. Calvanese Strinati at al., "Green Communications: An Emerging," p267-301, May, Journal of Green Engineering, 2011.
  3. Z. Niu, et al., "Cell zooming for cost-efficient green cellular networks," IEEE Communications Magazine, vol. 48, no.11, pp.74-79, November 2010.
  4. M. A Marsan, and M. Meo, "Energy efficient wireless Internet access with cooperative cellular networks," Computer Networks, 2010.
  5. L.C. Schmelz, et. al, "Self-organisation in Wireless Networks Use Cases and their Interrelation," 22nd WWRF, May 2009.
  6. K. Samdanis, D. Kutscher, and M. Brunner, "Self-organized energy efficient cellular networks," Proc. IEEE PIMRC'10, pp. 1665-1670, 2010.
  7. D. Calin, H. Claussen, and H. Uzunalioglu, "On femto deployment architectures and macrocell offloading benefits in joint macro-femto deployments," IEEE Communications Magazine, vol. 48, no. 1, pp. 26-32, 2010.
  8. A. J Fehske, F. Richter, and G. P Fettweis, "Energy Efficiency Improvements through Micro Sites in Cellular Mobile Radio Networks," 2nd International Workshop on Green Communications, Globecom, pp.1-5, Nov. 30 2009-Dec. 4 2009.
  9. J. Mitola III, and G. Q. Maguire, Jr., "Cognitive radio: making software radios more personal," IEEE Personal Communications, vol. 6, no. 4, pp. 13-18, Aug. 1999. https://doi.org/10.1109/98.788210
  10. An He, et. al., "Minimizing Energy Consumption Using Cognitive Radio," IEEE International Performance, Computing and Communications Conference (IPCCC), 2008, pp.372-377, 7-9 Dec. 2008.
  11. D. Feng, et al, "A Survey of Energy-Efficient Wireless Communications," IEEE Communications Surveys & Tutorials, vol. 15, no. 1, First Quarter 2013.
  12. M. Xiao, N.B. Shroff, and E.K.P. Chong. "A utility-based power-control scheme in wireless cellular systems," IEEE/ACM Transactions on Networking, 11:210-221, April 2003. https://doi.org/10.1109/TNET.2003.810314
  13. F. Meshkati, et al. "A game-theoretic approach to energy-efficient power control in multicarrier CDMA systems," IEEE Journal on Selected Areas in Communications, vol. 24, no.6, June 2006.
  14. C. Oh et al. A., "Downlink Throughput Maximization for Interference Limited Multiuser Systems: TDMA versus CDMA," IEEE Transactions on Wireless Communications, vol. 6, no.7, pp.2454 - 2463, July 2007. https://doi.org/10.1109/TWC.2007.05579
  15. A. J. Goldsmith and S. G. Chua., "Variable-rate variable-power MQAM for fading channels," IEEE Transactions on Communications, 45:1218-1230, October 1997. https://doi.org/10.1109/26.634685