DOI QR코드

DOI QR Code

Estimating Bathroom Water-uses based on Time Series Regression

시계열 회귀모형에 기초한 욕실 내 용수 사용량 추정

  • Myoung, Sungmin (Dept. of Medical Information and Administration, Jungwon University) ;
  • Kim, Donggeon (Dept. of Statistics & Information, Dongduk Women's University) ;
  • Jo, Jinnam (Dept. of Statistics & Information, Dongduk Women's University)
  • 명성민 (중원대학교 의료정보행정학과) ;
  • 김동건 (동덕여자대학교 정보통계학과) ;
  • 조진남 (동덕여자대학교 정보통계학과)
  • Received : 2014.07.04
  • Accepted : 2014.08.20
  • Published : 2014.08.30

Abstract

Analysis of influential factors on water consumption in households will help predicting the water demand of end-use in household and give an explanation to cause on the change of trend. In this research, the data are gathered by radio telemetry system which is combined electronic flow-meter and wireless communication system in 140 household in Korea. Using this data, we estimate for each residential type to determine liter per capita day. we used real data to predict bathtub and washbowl water-uses and compared the ordinary least square regression model and autoregressive regression error model. The results of this study can be applied in the planning stages of water and waste water facilities.

신뢰성 있는 물 수요예측을 실시하기 위해서는 실측자료를 이용하여 다양한 수요구조의 변화를 합리적으로 반영할 수 있는 수요예측모형을 개발 활용하는 것이 필요하다. 본 연구에서는 가정에서사용하고 있는 욕실 내 용수사용량 특성을 파악하기 위하여 전국 140여개 가구를 대상으로 전자식 유량계와 무선송신시스템이 결합된 원격측정시스템을 이용하여 실측자료를 취득하고, 이를 이용하여 각 사용량의 기준이 되는 원단위를 도출하였다. 향후 사용량 예측을 위하여 욕실 내 용수를 욕조용수와 세면용수로 구분하여 시계열 모형을 적용함으로써 물 수요관리 및 정책수립을 위한 정보로서 활용할 수 있도록 하였다.

Keywords

References

  1. Ministry of Environment, "Statistics of waterw orks: 2011", The Ministry of Environment, Sejong, pp. 1-10, 2013.
  2. Kim, H., Lee, D., Park, N., Jung, K., "Analysis of statistical characteristics of household water end-uses", Journal of the Korean Society of Civil Engineers, Vol.28, pp. 603-614, 2008.
  3. Lee, D., Kim, J., Kim, H., "Statistical analysis of non-household unit water use for business categories", Journal of the Korean Society of Civil Engineers, Vol.29, pp. 385-396, 2009.
  4. Cochran, R., Cotton, A. W., "Municipal water demand study, oklahoma city and tulsa, oklahoma", Water Resources Research, Vol. 21, pp. 941-943, 1985. https://doi.org/10.1029/WR021i007p00941
  5. Ministry of Environment, "Residental end uses of water: a pilot study", The Ministry of Environment, Sejong, pp. 15-20, 2003.
  6. AWWA Research Foundation, "Residential end uses of water", American Water Works Association Research Foundation, Denver, pp. 70-80, 1999.
  7. AWWA Research Foundation, "Commerical and institutional end uses of water", American Water Works Association Research Foundation, Denver, pp. 1-10, 2000.
  8. Zhou, S. L., McMahon, T. A., Walton, A., Lewis, J., "Forcasting daily water demand: A case study of Melboune", Journal of Hydrology, Vol. 236, pp. 153-164, 2000. https://doi.org/10.1016/S0022-1694(00)00287-0
  9. Kim, J., Kim, H., Lee, D., Kim, G., "Analysis of water use characteristics by household demand monitoring", Journal of Korean Society of Environmental Engineering, Vol.29, pp. 864-869, 2007.
  10. Myoung, S., Lee, D., Kim, H., Jo, J., "A comparison of statistical prediction models in household water end-uses", The Korean Journal of Applied Statistics, Vol.24, pp. 567-573, 2011. https://doi.org/10.5351/KJAS.2011.24.4.567
  11. Ghiassi, M., David K. Zimbra, H. Saidane. "Urban water demand forecasting with a dynamic artificial neural network model.", Journal of Water Resources Planning and Management, Vol.134, pp.138-146, 2008. https://doi.org/10.1061/(ASCE)0733-9496(2008)134:2(138)
  12. Wong, J. S., Zhang, Q., Chen, Y. D., "Statistical modelling of daily urban water consumption in Hong Kong: Trend, changing patterns, and forecast", Water Resources Research, Vol.46, W03506, 2010.
  13. Kim, Y., Park W., "Estimating automobile insurance premiums based on time series regression", The Korean Journal of Applied Statistics, Vol. 26, pp. 237-252, 2013. https://doi.org/10.5351/KJAS.2013.26.2.237
  14. Choi, B., "Univariate time series analysis", Sekyungsa, Seoul, 1992.
  15. Lee, H., "Analysis of time series models for PM10 concentrations at the Suwon city in Korea", Journal of the Korean Data & Information Science Society, Vol. 23, pp. 535-542, 2010. https://doi.org/10.7465/jkdi.2012.23.3.535
  16. Kim, H., "The application of time series analysis under R environment", Journal of the Korean Data Analysis Society, Vol.13, pp. 331-341, 2011.
  17. Jeong, H., A study on Korea domain registration forecasting, Journal of the Korean Data Analysis Society, Vol. 14, pp. 1889-1898, 2012.
  18. Choi, B., Kang, H., Lee, K., Han, S., "A development of time-series model for city gas demand forecasting", The Korean Journal of Applied Statistics, Vol. 22, pp. 1019-1032, 2009. https://doi.org/10.5351/KJAS.2009.22.5.1019
  19. Cho, Y., Lee, G., "Modelling and prediction of time series data based on markov model", Journal of the Korea Society of Computer and Information, Vol. 16, pp. 225-233, 2011.