DOI QR코드

DOI QR Code

Efficient MCS for random vibration of hysteretic systems by an explicit iteration approach

  • Su, Cheng (School of Civil Engineering and Transportation, South China University of Technology) ;
  • Huang, Huan (School of Civil Engineering and Transportation, South China University of Technology) ;
  • Ma, Haitao (School of Civil Engineering and Transportation, South China University of Technology) ;
  • Xu, Rui (School of Civil Engineering and Transportation, South China University of Technology)
  • 투고 : 2013.12.20
  • 심사 : 2014.03.11
  • 발행 : 2014.08.29

초록

A new method is proposed for random vibration anaylsis of hysteretic systems subjected to non-stationary random excitations. With the Bouc-Wen model, motion equations of hysteretic systems are first transformed into quasi-linear equations by applying the concept of equivalent excitations and decoupling of the real and hysteretic displacements, and the derived equation system can be solved by either the precise time integration or the Newmark-${\beta}$ integration method. Combining the numerical solution of the auxiliary differential equation for hysteretic displacements, an explicit iteration algorithm is then developed for the dynamic response analysis of hysteretic systems. Because the computational cost for a large number of deterministic analyses of hysteretic systems can be significantly reduced, Monte-Carlo simulation using the explicit iteration algorithm is now viable, and statistical characteristics of the non-stationary random responses of a hysteretic system can be obtained. Numerical examples are presented to show the accuracy and efficiency of the present approach.

키워드

참고문헌

  1. Baber, T.T. and Wen, Y.K. (1982), "Stochastic response of multistorey yielding frames", Earthq. Eng. Struct. Dyn., 10(3), 403-416. https://doi.org/10.1002/eqe.4290100305
  2. Bathe, K.J. (1996), Finite Element Procedures, Englewood Cliffs, Prentice-Hall, NJ, USA.
  3. Caughey, T.K. (1960), "Random excitation of a system with bilinear hysteresis", J. Appl. Mech., 27(10), 649-652. https://doi.org/10.1115/1.3644077
  4. Hurtado, J.E. and Barbat, A.H. (2000), "Equivalent linearization of the Bouc-Wen hysteretic model", Eng. Struct., 22(9), 1121-1132. https://doi.org/10.1016/S0141-0296(99)00056-5
  5. Ikhouane, F., Hurtado, J.E. and Rodellar, J. (2007a), "Variation of the hysteresis loop with the Bouc-Wen model parameters", Nonlinear Dyn., 48(4), 361-380. https://doi.org/10.1007/s11071-006-9091-3
  6. Ikhouane, F., Manosa, V. and Rodellar, J. (2007b), "Dynamic properties of the hysteretic Bouc-Wen model", Syst. Control Lett., 56(3), 197-205. https://doi.org/10.1016/j.sysconle.2006.09.001
  7. Ismail, M., Ikhouane, F. and Rodellar, J. (2009), "The hysteretic Bouc-Wen model, a survey", Arch. Comput. Meth. Eng., 16(2), 161-188. https://doi.org/10.1007/s11831-009-9031-8
  8. Iyengar, R.N. and Dash, P.K. (1978), "Study of the random vibration of nonlinear systems by the Gaussian closure technique", J. Appl. Mech., 45(2), 393-399. https://doi.org/10.1115/1.3424308
  9. Jennings, P.C. (1965), "Earthquake responses of a yielding structures", J. Eng. Mech. Div. ASCE, 91, 41-68.
  10. Kanai, K. (1957), "Semi-empirical formula for the seismic characteristics of the ground motion", Univ. Tokyo Bull. Earth. Res. Inst., 35(2), 309-325.
  11. Ma, C.F., Zhang, Y.H., Zhao, Y., Tan, P. and Zhou, F.L. (2011), "Stochastic seismic response analysis of base-isolated high-rise buildings", Procedia Eng., 14, 2468-2474. https://doi.org/10.1016/j.proeng.2011.07.310
  12. Ma, F., Zhang, H., Bochstedte, A., Foliente, G.C. and Paevere, P. (2004), "Parameter analysis of the differential model of hysteresis", J. Appl. Mech., 71(3), 342-349. https://doi.org/10.1115/1.1668082
  13. Mettupalayam, V.S. and Andrei, M.R. (2000), "Hysteretic models for deterioration inelastic structures", J. Eng. Mech., 126(6), 633-640. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:6(633)
  14. Moler, C. and Loan, C.V. (2003), "Nineteen dubious ways to compute the exponential of a matrix, twentyfive years later", Soc. Ind. Appl. Math. Rev., 45(1), 3-49.
  15. Naess, A. and Moe, V. (1996), "Stationary and non-stationary random vibration of oscillators with bilinear hysteresis", Int. J. Non-Linear Mech., 31(5), 553-562. https://doi.org/10.1016/0020-7462(96)00020-0
  16. Ozdemir, H. (1976), "Nonlinear transient dynamic analysis of yielding structures", Ph.D. Dissertation, University of California, Berkeley, CA, USA.
  17. Park, Y.J., Wen, Y.K. and Ang, A.H. (1986), "Random vibration of hysteretic systems under bi-directional ground motions", Earthq. Eng. Struct. Dyn., 14(4), 543-557. https://doi.org/10.1002/eqe.4290140405
  18. Roberts, J.B. (1978), "The response of an oscillator with bilinear hysteresis to stationary random excitation", J. Appl. Mech., 45, 923-928. https://doi.org/10.1115/1.3424442
  19. Roberts, J.B. and Spanos, P.D. (2003), Random Vibration and Statistical Linearization, (2nd Edition), Dover Publications, New York, NY, USA.
  20. Sivaselvan, M.V. (2013), "Hysteretic models with stiffness and strength degradation in a mathematical programming format", Int. J. Non-linear Mech., 51, 10-27. https://doi.org/10.1016/j.ijnonlinmec.2012.12.004
  21. Su, C. and Xu, R. (2010), "Time-domain method for dynamic reliability of structural systems subjected to non-stationary random excitations", Acta Mech. Sinica, 42(3), 512-520. [In Chinese]
  22. Su, C., Xu, R., Liu, X.L. and Liao, X.Z. (2011), "Non-stationary seismic analysis of large-span spatial structures by time-domain explicit method", J. Build. Struct., 32(11), 169-176. [In Chinese]
  23. Taketa, T. and Sozen, M.A. (1970), "Reinforced concrete response to simulated earthquakes", J. Struct. Div., 96(12), 2557-2573.
  24. Wang, J. and Lin, J.H. (2000), "Seismic random response analysis of hysteretic systems with pseudo excitation method", ACTA Mech. Solida Sinica, 13(3), 246-253.
  25. Wang, Y., Ying, Z.G. and Zhu, W.Q. (2009), "Stochastic averaging of energy envelope of Preisach hysteretic systems", J. Sound Vib., 321(3-5), 976-993. https://doi.org/10.1016/j.jsv.2008.10.021
  26. Wen, Y.K. (1976), "Method for random vibration of hysteretic systems", J. Eng. Mech. D., 102(2), 249-263.
  27. Wen, Y.K. (1980), "Equivalent linearization for hysteretic systems under random excitation", J. Appl. Mech., 47(1), 150-154. https://doi.org/10.1115/1.3153594
  28. Zeng, Y. and Li, G. (2013), "Stationary response of bilinear hysteretic system driven by Poisson white noise", Prob. Eng. Mech., 33, 135-143. https://doi.org/10.1016/j.probengmech.2013.03.005
  29. Zhong, W.X. and Williams, F.W. (1994), "A precise time step integration method", Proceedings of the Institution of Mechanical Engineers, Part C: J. Mech. Eng. Sci., 208(6), 427-430. https://doi.org/10.1243/PIME_PROC_1994_208_148_02
  30. Zhu, W.Q. and Cai, G.Q. (2002), "Nonlinear stochastic dynamics: A survey of recent developments", Acta Mech. Sinica., 18(6), 551-566. https://doi.org/10.1007/BF02487958
  31. Zhu, W.Q. and Lei, Y. (1988), "Stochastic averaging of energy envelope of bilinear hysteretic systems", Nonlinear Stoch. Dyn. Eng. Syst., 381-391.
  32. Zhu, X.D. and Lu, X.L. (2011), "Parametric identification of Bouc-Wen Model and its application in mild steel damper modeling", Procedia Eng., 14, 318-324. https://doi.org/10.1016/j.proeng.2011.07.039

피인용 문헌

  1. Hybrid approach to seismic reliability assessment of engineering structures vol.153, 2017, https://doi.org/10.1016/j.engstruct.2017.10.037
  2. Random vibration analysis of structures by a time-domain explicit formulation method vol.52, pp.2, 2014, https://doi.org/10.12989/sem.2014.52.2.239
  3. An explicit time-domain approach for sensitivity analysis of non-stationary random vibration problems vol.382, 2016, https://doi.org/10.1016/j.jsv.2016.06.034
  4. Synergy of monitoring and security vol.17, pp.5, 2016, https://doi.org/10.12989/sss.2016.17.5.743
  5. A novel model order reduction scheme for fast and accurate material nonlinear analyses of large-scale engineering structures vol.193, pp.None, 2014, https://doi.org/10.1016/j.engstruct.2019.04.036