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Abstract—This paper proposes an abnormal V-

shaped-error-free non-blind deconvolution technique 

featuring an adaptively segmented forward-problem 

based iterative deconvolution (ASDCN) process. 

Unlike the algebraic based inverse operations, this 

eliminates any operations of differential and division 

by zero to successfully circumvent the issue on the 

abnormal V-shaped error. This effectiveness has been 

demonstrated for the first time with applying to a real 

analysis for the effects of the Random Telegraph 

Noise (RTN) and/or Random Dopant Fluctuation 

(RDF) on the overall SRAM margin variations. It has 

been shown that the proposed ASDCN technique can 

reduce its relative errors of RTN deconvolution by 

10
13
 to 10

15
 fold, which are good enough for avoiding 

the abnormal ringing errors in the RTN 

deconvolution process. This enables to suppress the 

cdf error of the convolution of the RTN with the RDF 

(i.e., fail-bit-count error) to 1/10
10
 error for the 

conventional algorithm.   

 

Index Terms—Non blind deconvolution, SRAM, 

random telegraph noise, time-dependent margin 

variation    

I. INTRODUCTION 

The guard band (GB) design for static random access 

memory (SRAM) is expected to become a critical 

challenge because the increased time-dependent (TD) 

margin variations (MV)-caused failures cannot be 

predicated any more by only the convolution analyses [1, 

5]. This is because (1) TD-MV, (i.e., unknown MV after 

being shipped to the market), will become much larger 

than the non-TD-MV, (i.e., given MV based on the 

measurements), resulting in the TD-MV dominating over 

the overall MV. This leads to a rapid increase in pressure 

to figure out the unknown factors by solving the inverse 

problem [6, 8], even though SRAM designers are 

unfamiliar with such a methodology and (2) the tail 

distribution of the convolution results of the TD-MV and 

non-TD-MV no longer shows Gaussian behavior but 

more complex mixtures of Gamma distributions [3-7], as 

shown in Figs. 1(a) and (b). Traditional SRAM statistical 

analyses including its convolution integral have no 

choice but to rely on the simple Gaussian model. Its 

parameters are extracted in advance using the measured 

data. On the other hand, if the non-Gaussian unknown 

factors no longer account for just a fraction but a large 

percentage of the overall MV(shown in Fig. 1(b)), the 

non-Gaussian inverse problem needs to be solved based 

on the pre-defined hypothesis of the unknown factors or 

final target specifications, as shown in Figs. 1(c) and (d). 

To clarify the challenges behind the proposed ideas in 

this paper, the concepts of what will be crucial in the 

coming process generations are shown in this section. 

First of all, the relationship between the threshold 
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voltage (Vth) and random dopant fluctuation (RDF) and 

the random telegraph noise (RTN) needs to be examined. 

References [4-6] reported that the distributions for the 

Vth variation (σVth) due to the RDF and the RTN, i.e. 

σVth_RDF and σVth_RTN, obeyed the Gaussian and the 

Gamma distributions, respectively. “RTN distribution” 

and “RDF distribution”, which are used in this paper, 

represent the Vth distributions with σVth_RTN and 

σVth_RDF, respectively. 

Therefore, the Vth random variation (σVth) 

considering both the RDF and RTN effects can be 

obtained from the convolution of σVth_RDF (f(x)) with 

σVth_RTN (g(x)). As a result, the distribution of the 

entire σVth (h(x)) can be expressed as  

 

 h(x) = f(x)⊗g(x)  (1)  

 

In Fig. 1, the probability of the density function (pdf) 

of f(x) and g(x) for σVth_RDF and σVth_RTN were 

assumed to obey the Gaussian and Gamma distributions 

that are given by the NORMSDIST(x) and 

GAMMA.DIST(x, σ, β) in the Microsoft Excel function, 

where σ and β are the shape and inverse scale parameters, 

respectively. 

“x” is used as a title for the x-axis in Fig. 1, and 

represents the scale of the distributions of the random 

variation, such as σVth_RDF and σVth_RTN. The x-axis 

was normalized to address the different Gaussian 

distributions for σVth_RDF and the Gamma distributions 

for σVth_RTN in the same figure, as shown in Fig. 2(b). 

In this paper, µ and σ for the Gaussian RDF distribution 

are assumed µ=1 and σ=1. The relationship between the 

probability density function (PDF) and the x (raw score) 

is shown in Fig. 2(b). On the other hand, the parameter 

set(α, β) for 3-different Gamma distributions of RTN-1, 

RTN-2, and RTN-3 are assumed as(1, 0.05), (1, 

0.25) and (1, 0.56), which determine the relationship of 

the tail length at PDF=10-12 between the RDF, RTN-1, 

RTN-2, and RTN-3, as shown in Fig. 2(b). 

The “z-score” can be used to normalize the x-axis only 

for a Gaussian distribution, which is expressed as (2) 

 

 z = (x - µ)/σ (2) 

 

where µ and σ are the parameters for the mean and 

standard deviation, respectively. 

On the other hand, the “z-score” cannot be used for the 

Gamma distribution. Therefore, “x (raw score)” was used 

as a title for the x-axis for both σVth_RDF and 

σVth_RTN. Since µ=1 and σ=1 are assumed in this 

paper, “z-score” = “x (raw score)”. 

The relationship between the σVth and MV, such as 

random variations of the static noise margin (σSNM) or 

VDD,min (σVDD,min) caused by σVth, were assumed for 

simplicity [8] in this paper as follows. 

 

 σSNM(x)=k1×σVth(x) (3) 

 σVDD,min(x)=k2×σVth(x)  (4) 

 

 

Fig. 1. Convolution of RDF with RTN (a) traditional, (b) new 

relationship between RDF, RTN. Extraction of (c) RTN, (d) 

RDF from the overall MV with (c) RDF, (d) RTN based on the 

deconvolution. 
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 SNM(x) = SNM_mean + σSNM(x) (5) 

 VDD,min (x) = VDD,min _mean + σVDD,min (x)    (6) 

 

where k1 and k2 represent a linear correlation coefficient 

[8]. SNM_mean and VDD,min_mean are the values of 

SNM and VDD,min excluding the σVth effects on the MV. 

In this paper, SNM_mean and VDD,min_mean were 

assumed to be 0 so only the σVth effects on the MV are 

discussed, as shown in Fig. 1. 

The increasing paces of the σVth amplitude are 

differently dependent on the MOSFET size scaling 

parameter like the expressions in (7) and (8) below. 

 

 ∆Vth (RDF)  AVt (RDF) LW∝   (7) 

 ∆Vth (RTN)  AVt (RTN) LW∝   (8) 

 

where AVt is the Pelgrom coefficient and the LW are the 

MOSFET channel length and width [3, 4], respectively. 

∆Vth is equivalent to 1.414×σVth. 

Assuming that LW is scaled down to a half size (0.5x) 

for every process generation, the σVth increasing paces 

of the RTN becomes 1.4x faster than that of the RDF. In 

addition, because the advanced CMOS device tends to 

change to much less-dopant body devices, such as 

FinFET, ultra-thin body SOI and nanowire FET, the RDF 

increasing the speed can be reduced, resulting in an 

increasing pace [3, 4].  

As a result, the amplitude for the RTN (g(x)) will at 

some time exceed the amplitude for the RDF (f(x)), as 

shown in Figs. 2(a) and (b). According to [3, 4], it might 

occur around the 15 nm scaled CMOS era, which is 

expected in the near future. A change in the relationship 

between g(x) and f(x) can be observed when comparing 

the relationship in Fig. 2(a) with that in Fig. 2(b). 

The remainder of this paper is organized as follows. 

Section II discusses the issues on the deconvolution. 

Section III examines the deconvolution error 

comparisons and propose the new algorithm to address 

the issues. The extraction results of the proposed one are 

also discussed in this section followed by the conclusion 

in section IV. 

II. CONVOLUTION/DECONVOLUTION OF RTN 

AND RDF 

1. Concept of Convolution and Deconvolution 

 

First of all in this section, the relationship between the 

convolution (⊗) and deconvolution (⊗
-1) is explained, 

where ⊗ and ⊗
-1 being used in this paper are arithmetic 

symbols of operation of the convolution and 

deconvolution, respectively. 

Fig. 3(a) shows the concept for the required convolution 

methods to extrapolate the entire MV distribution based on 

the given data of the RDF and the RTN. Fig. 3(b) recounts 

the following scenarios: the target specs were predefined 

in advance. The RTN distribution was also predefined or 

given. Therefore, the required truncating point (TP), 

corresponding to a certain minimum operating voltage 

(VDD,min), which is used for the screening test VDD, can be 

determined. The TP should be decided based on the RDF 

distributions to avoid any out of specs after the shipment. 

Fig. 3(c) assumes the different scenarios: both of the target 

 

 

 

 

Fig. 2. (a) Increasing pace comparisons of RDF and RTN, (b) 

Relationship of tail length of RDF and 3-type of RTN, RTN-1, 

RTN-2, and RTN-3, where RTN-n corresponds to RTN at the 

point of (n), n=1,2,3 in Fig. 2(a). 
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specs and the RTN distribution are predefined or given. 

Therefore, how much the overall MV can be shifted using 

the MV assisted circuit schemes (ASSTS) can be 

determined [8, 9]. 

This can be used to set the target of the SRAM circuit 

designers. Fig. 3(d) shows another scenario. The target 

specs and the truncated RDF distribution are predefined 

or given. Therefore, the device target for the reduced 

level of the RTN amplitude can be specified. This can be 

used to set the target of process device engineers. 

 

2. Computing of Convolution and Deconvolution 

 

Table 1(a) presents the convolution given by the 

equation. Since the convolution of f with g can be 

considered as the forward problem, if the mathematical 

equation and the parameters at the segmentation of f1-fn 

and g1-gn, are given, the observation of h1-hn can be 

calculated easily. This operation plays the role of low-

pass filtering, resulting in h=f⊗g being a smoothed 

curve. 

The deconvolution can be calculated based on the 

equation in Table 1(b). If the observation of h1-hn and 

the parameter of f1-fn at the segmentation are given with 

the mathematical equation, the unknown parameter of g1-

gn can be calculated easily under the limited conditions.  

On the other hand, because the deconvolution needs to 

be considered as an inverse problem, the invert operation, 

i.e., high-pass filtering, needs to be performed, as shown 

in Table 1(b). 

 

3. Issues Facing Deconvolution Operations 

 

The deconvolution can be calculated based on the 

equation in Table 1(b). If the observation of h1-hn and 

the parameter of f1-fn at the segmentation are given with 

the mathematical equation, the unknown parameter of g1-

gn can be calculated easily under the limited conditions.  

On the other hand, because the deconvolution needs to 

be considered as an inverse problem, the invert operation, 

i.e., high-pass filtering, needs to be performed, as shown 

in Table 1(b). This causes the issues facing the inverse 

operations: (1) division by zero and Gibbs phenomenon, 

resulting in a ringing curve. As shown in Fig. 4, the 

deconvolution of the RTN causes abnormal folding and 

ringing, resulting in significant deviation of the RTN 

distribution from the expected curve. This stems from the 

 

Fig. 3. Comparisons of the convolution and deconvolution (a) 

convolution of the given data of RDF and RTN, (b)-(d) 

examples of deconvolution (inverse problem) required to detect 

the unknown factors based on the pre-defined target 

specifications: (b) detecting TP, (c) required assisting amount,

(d) noise level needed to keep the MV tail within the target 

spec. 

 

Table 1. Comparisons of computing steps of convolution and 

deconvolution. 
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required invert operation, i.e. high-pass filtering to 

perform the deconvolution. The point of “V” where the 

error exceeds a certain level, resulting in occurrence of 

“V-shaped” abnormal error is quite sensitive to the 

relationship of the gradients among f, g and h, as can be 

seen when comparing those of Figs. 4(a) and (b). 

It is found that the ringing and folding V-shaped error 

also happen in the case of assuming the relationship of 

the RDF f(x) and RTN-2 g(x)(see Fig. 2(b)). This error 

makes the deconvoluted RTN distribution g(x) 

significantly deviated from the expected curve, as shown 

in Fig. 5(a). This stems from the required invert 

operation, i.e., differentiation and feedbacks, resulting in 

accumulating of the errors, as shown in Fig. 5(b). Once 

the accumulated error level exceeds a certain level, the 

ringing are excited and the error is amplified, as shown in 

Fig. 5(a). This sort of high-pass filtering behavior makes 

the output more sensitive to the noise and the error, 

resulting in an unstable operation [7, 8]. 

The purpose of this work is to propose the three novel 

deconvolution methods for the SRAM-designs, which 

enable: (1) to substantially circumvent the abnormal V-

shaped ringing errors by eliminating the need of the 

inverse operation, (2) to increase the deconvolution 

accuracy in the tail region where its pdf is less than10-12. 

Since the SRAM fail probability is extremely rare-event 

level (pdf is less than 10-12), the degree of precision for 

the tail distribution gives a big impact on the accuracy of 

the fail-bit count (FBC) prediction. Unlike the 

conventional optimization problem, which tends to 

neglect the rare-event probability zone, the proposed idea 

tries to keep a sharp eye on the rare event probability 

area by introducing the segmented optimization and (3) 

to guarantee the good enough deconvolution precision 

even if the RTN distribution comprises the complex 

gamma mixtures with the multiple convex and concave 

folding points. 

To the best of our knowledge, our work [9] was the 

first time to present the deconvolution algorithm for 

SRAM-designs featuring an iterative and adaptively 

segmented forward-problem based deconvolution 

(ASDCN) process and enabling to achieve the above 

mentioned three objects. 

III. PROPOSED ADAPTIVELY SEGMENTED F

ORWARD-PROBLEM BASED I

TERATIVE DECONVOLUTION ALGORITHM 

1. Forward-Problem Based Algorithm 

 

The key feature of the forward based deconvolution 

 

 

 

Fig. 4. Abnormal phenomenon of V-shaped folding and ringing 

when using the conventional deconvolution algorithm. The 

difference between (a) and (b) is just the x-phase shift of f. 

 

 

Fig. 5. Issue of V-shaped error in deconvoluion process using 

algebraic way where division by zero can happen. 
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algorithm is not to use the inverse operation (see Fig. 

6(b)) such as differentiation and division by zero at all, as 

shown in Fig. 6(c). Instead, we solve the optimization 

problem that seeks g(i) for minimizing (|h - h(i)|), where 

h(i) is the convolution of g(i) with f, as shown in Fig. 6(c). 

We use “fminsearch” in MATLAB to seek the 

minimum of unconstrained multivariable function, which 

allows a derivative-free method. The distribution of g(i) is 

approximated by gamma distribution with three 

parameters of α (shape), β (inverse scale) and κ(peak 

value). In the proposed algorithm, h(i) is defined as the 

convolution of h(i)=g(i)⊗f (see Fig. 6(c)). Thanks to 

avoiding the inverse operation, the behavior of the 

deconvolution process becomes insensitive to the noise 

and the error like the low-pass filtering. As a result, the 

accumulated deconvolution errors are significantly 

suppressed and its error level is reduced by >1017 at raw 

score x=-6, as shown in Fig. 7. Any ringing noises and 

V-shaped errors are not observed any more when using 

the forward problem based deconvolution algorithm. 

 

2. Limitation of Forward-Problem Based Algorithm 

 

As proposed in Fig. 6(c), the forward problem-based 

deconvolution algorithm takes some optimization process 

to find the best g(i) that minimize the |h-h(i)|. In this 

application, however, since the distribution type is sort of 

exponential, the difference in the pdf level between x=0 

and x=-6 is very huge, e.g., 4 orders of magnitude, as can 

be seen in Fig. 8(b). The conventional optimization 

problem prioritizes the higher frequent probability 

around x=0 because the pdf around there dominates the 

overall cdf. As a result, unfortunately, the cdf error is 

best reduced around x=0, while leaving the errors in the 

tail region (x=-6) as it is.  

When strictly comparing the relative errors across all 

x-regions, it has an x-position dependency and becomes 

larger as the raw score x is increased, as shown in Fig. 

8(b). When considering an actual application for the fail-

bit count (FBC) prediction, the degree of precision for 

the tail distribution gives a huge impact on the accuracy 

of the FBC prediction because the SRAM fail probability 

is extremely rare-event level (pdf is less than 10-12). 

 

3. Proposed Segmented Deconvolution Algorithm 

 

To address this issue, we propose a novel algorithm 

featuring an iterative and segmented forward problem 

based deconvolution (SDCN). The key concept is shown 

in Fig. 9. h(i) is defined as the convolution of the 

 

Fig. 7. Comparison of RTN deconvolution results between the 

algebraic and forward problem-based algorithms. 

 

 

Fig. 8. Limitation of forward-problem based algorithm. 

 

 

 

Fig. 6. Deconvolution algorithm comparisons between (b) the 

conventional algebraic, (c) proposed one that uses only (a) 

convolution instead of (b) algebraic deconvolution process. 
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summation of the line-segment of (g1
(i):gk-1

(i)) and gk
(i) 

with f, i.e., h(i) =[seg(g1
(i):gk-1

(i))+gk
(i)] ⊗ f(see Fig. 9) 

The process of seeking the best g(i) follows the 

sequentially step by step manner, i.e., starting from 

around x=0 and finally focusing on the important zone of 

the rare-event so that each optimization step cannot be 

interfered with by the other higher sensitivity zone. Once 

found the best g(i) in each segmentation, its value is 

temporally fixed until the next iteration process. 

Thanks to this algorithm, the error is reduced by 103 

compared with the non-segmentation case, as shown in 

Fig. 10. It can be seen in Fig. 10 that the each 

optimization in individual segmentation is successfully 

done, resulting in no dependency of the position of the 

segmentation. 

 

4. RTN Tail Length Dependency 

 

In this session, the RTN tail length (tail slope) 

dependencies on the error are compared. As can be seen 

in Figs. 11(b) and (c), it is found that the proposed SDCN 

can reduce the error for the short tailed and long tailed 

RTN by 102 and 104, respectively, compared with the 

case without any segmented optimizations. 

Since the final target of this work is to increase the 

accuracy of the FBC prediction, the precision of the 

cumulative distribution function (cdf) of h(x) is the key 

to the success of this work. Fig. 12 shows the 

comparisons of the cdf errors for the several cases with a 

different RTN tail length. The box represents for the 

attention x-zone where its pdf level of h(x) is about 10-12, 

i.e., rare event level. This zone is referred to as “attention 

x”. When compared with the cdf error at this x point, it is 

 

Fig. 9. Segmented deconvolution algorithm. 

 

 

Fig. 10. Segmented deconvolution algorithm. 

 

 

Fig. 11. Comparisons of the effectiveness of the proposed

segmented algorithm between the short (RTN-1) and long tailed 

RTN (RTN-3). 

 

 

Fig. 12. Comparisons of cdf error (i.e., fail bit count error) 

between the cases w/ and w/o the proposed SDCN algorithm

for different RTN tail length. 
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found that the proposed SDCN can increase the accuracy 

of the FBC prediction by 102, 103, and 105, respectively. 

 

5. Limitation of SDCN Algrithm 

 

In session IV, we assume that the RTN distribution 

obeys a single gamma distribution with different tail 

slope and length. 

However, we may need to assume RTN distribution 

with more complex gamma mixtures with various sloped 

segments, as shown in Fig. 13. In this paper, we refer to 

the RTN distribution with the multiple convex folding 

points (p,q) and the mixtures of the convex and concave 

folding points (p,q,r,s,t,u), i.e., (a) “RTN combo” and (b) 

“RTN complex”, respectively, as shown in Fig. 13. 

As can be seen in Fig. 13, the distribution shape gives 

a big impact on the distribution of the convolution of 

RDF with RTN. In that sense, we have to guarantee the 

precision level of the RTN deconvolution whatever its 

slope and length of the RTN tail is. 

To make more clear the effectiveness and remaining 

the issues of the proposed algorithm SDCN, the 

demonstration results for the case of combo is shown in 

Fig. 14(b). 

Fig. 14(a) shows the deconvolution result for the 

combo RTN with two convex folding points (p,q) by 

using the SDCN algorithm. As can be seen in Fig. 14(b), 

the errors in the segment that includes the folding points 

(p,q) are 15-orders of magnitude larger than those in 

other segments. This is the remaining issue confronting 

the proposed SDCN when adapting to the combo and 

complex typed RTN tail distributions. 

 

6. Proposed Adaplitively Segmentation Algorithm 

 

To address this issue, we propose that the 

segmentation width is adaptively changed by ΔW1 and 

ΔW2 such that the error can be minimized (i.e, min| h - 

h’|, where h’=f⊗g’ and g’= h⊗
-1f). The ΔWn is the 

shift amount required to set the boundary line of the 

segmentations always just on folding point (FP), as 

shown in Fig. 15(b).  

Thanks to the proposed segmentations, the error is 

reduced to 1/1015 that of the original result, as shown in 

 

Fig. 13. 2-types of RTN with (a) multiple convex folding 

points, (b) mixtures of the convex and concave folding points. 

 

 

Fig. 14. Limitation of SDCN algorithm when there is the 

folding point in the segmentation such as p and q. 

 

 

Fig. 15. Effects of the proposed ASDCN algorithm on the error 

reduction for the combo-RTN distribution. 
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Fig. 15(c). We refer to this modified work as “adaptively 

segmented forward-problem based iterative decon- 

volution” (ASDCN). 

Figs. 16(a) and (b) show the comparison of the 

deconvolution results for the complex RTN with 4-

convex (p,r,t,u) and 2-concave (q,s) folding points 

between the two cases of using the original SDCN and 

the modified algorithm (ASDCN), respectively. The 

ΔWn (n=1 to 6) are the shift amounts required to set the 

boundary line of the segmentations just on the folding 

point (FP), as shown in Fig. 16(b). It is found that the 

error for ASDCN is reduced to 1/1013 that of the SDCN, 

as shown in Fig. 16(c). 

Fig. 17 shows the comparisons of the cdf error (i.e., 

FBC prediction error) between the combo and complex 

RTN with the different RTN tail shape and length. When 

compared with cdf error at the x point in the interest area, 

it is found that the modified proposed work (ASDCN) 

can increase the accuracy of the FBC prediction by 1010 

fold compared with the conventional case that doesn’t 

use the adaptive segmentation. 

IV. DISCUSSIONS AND CONCLUSIONS 

We have proposed the deconvolution techniques 

(SDCN and ASDCN) enabling to successfully 

circumvent the issue on an abnormal V-shaped error 

confronting the conventional algebraic based-inverse 

computation process. The effectiveness of the proposed 

techniques have been demonstrated for the first time with 

applying to a real analysis for the effects of the RTN and 

the RDF on the overall SRAM margin variations. 

Table 2 shows that the SDCN reduces its relative 

deconvolution errors for RTN-1, RTN-2, and RTN-3 by 

about 102, 103 and 104 fold, respectively. As a result, the 

fail-bit-count prediction errors for them are reduced by 

about 102, 103 and 105fold, respectively thanks to the 

suppressed deconvolution errors. 

The proposed ASDCN solves the issues confronting 

 

Fig. 16. Effects of the proposed ASDCN algorithm on the error 

reduction for the complex-RTN distribution. 

 

 

 

Fig. 17. Effects of the proposed ASDCN algorithm on the cdf-

error reduction for the combo and complex-RTN distribution. 

This work reduces the FBC errors by 1010. 

 
Table 2. Summary and Comparisons of RTN g(x)

deconvolution errors and its impact on cdf errors of h(x). 

ERR-C : Cdf relative error for cdf(Xa) of h(x) where Xa is for pdf(Xa)=10-12

ERR-B : RTN relative error in segment  with folding point

ERR-A : RTN relative error in segment  without folding point

Conventional
(w/o segmentation)

SDCN

ASDCN

ERR-A

ERR-C

Conventional
(w/o segmentation)

SDCN

RTN1 RTN2 RTN3

SDCN
ERR-B

ERR-C

SDCN

Combo Complex

ASDCN

1e-10 5e-11 9e-11

2e-12 1e-14 9e-15

1e-21 1e-21 1e-20

1e-23 1e-24 1e-25

1e-1

1e-14

5e-1

1e-15

1e-13 1e-13

1e-24 1e-24
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the SDCN technique when applying for RTN 

distributions with folding points (Combo and Complex). 

It is found that ASDCN reduces its relative 

deconvolution errors for Combo and Complex by about 

1014and 1013fold, respectively. As a result, the fail-bit-

count prediction errors for them are reduced by about 

1011thanks to the suppressed deconvolution errors. 
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