DOI QR코드

DOI QR Code

Impact of Sea Surface Scattering on Performance of QPSK

해면산란이 QPSK 성능에 미치는 영향

  • Xue, Dandan (Department of Information and Communications Engineering, Pukyong National University) ;
  • Seo, Chulwon (Department of Information and Communications Engineering, Pukyong National University) ;
  • Park, Jihyun (Department of Information and Communications Engineering, Pukyong National University) ;
  • Yoon, Jong Rak (Department of Information and Communications Engineering, Pukyong National University)
  • Received : 2014.07.03
  • Accepted : 2014.08.05
  • Published : 2014.08.31

Abstract

Time-variant sea surface causes a forward scattering and Doppler spreading in received signal on underwater acoustic communication system. This results in time-varying amplitude, frequency and phase variation of the received signal. In such a way the channel coherence bandwidth and fading feature also change with time. Consequently, the system performance is degraded and high-speed coherent digital communication is disrupted. In this paper, quadrature phase shift keying (QPSK) performance is examined in two different sea surface conditions. The impact of sea surface scattering on performance is analyzed on basis of the channel impulse response and temporal coherence using linear frequency modulation (LFM) signal. The impulse response and the temporal coherence of the rough sea surface condition were more unstable and less than that of the calm sea surface condition, respectively. By relating these with time variant envelope, amplitude and phase of received signal, it was found that the bit error rate (BER) of QPSK are closely related to time variation of sea surface state.

해면 상태의 변화는 수중 음향 통신 수신 신호에 전방 산란 및 도플러 확산을 야기하여 수신 신호의 진폭, 주파수 및 위상은 시간적으로 변화한다. 따라서 통신채널의 일관성 대역폭과 페이딩 변화에 의해 고속 동기식 디지털 통신 성능은 장애를 받게 된다. 본 논문에서는 2가지의 해면 상태에서 QPSK의 성능을 평가하였다. 해면 산란이 성능에 미치는 영향은 LFM 신호를 이용하여 구한 채널의 임펄스 응답과 시간 일관성을 기반으로 해석하였다. 잔잔한 해면보다 거친 해면 상태의 임펄스 응답은 불안정하고 일관성 시간은 짧다. 이러한 결과와 수신 신호의 포락선, 진폭 및 위상과의 관계를 해석하여 QPSK의 비트 오류율이 해면 상태와 직접적으로 관계되는 것을 확인하였다.

Keywords

References

  1. Xavier Lurton, An Introduction to Underwater Acoustics, 2nd ed. Springer-Verlag Berlin and Heidelberg: GmbH & Co, 2010.
  2. S. Byun, S. Kim, Y. Lim, and W. Seong, "Time-varying Underwater Acoustic Channel Modeling for Moving Platform," 0-933957-35-1 MTS, 2007.
  3. M. Badiey, J. Eickmeier, and A. Song "Arrival-time fluctuations of coherent reflections from surface pravity water waves," J. Acoust. Soc. Am., vol.135, no.5, pp.EL226-EL231, May 2014. https://doi.org/10.1121/1.4871577
  4. J. L. Hennessy, and D. A. Patterson, "Underwater Acoustic Communication Channels: Propagation Models and Statistical Characterization," IEEE Communications Magazine, vol.47, no.1, pp.84 -89, Jan. 2009.
  5. H. S. Dol, E. Mathieu, G. D. Colin, A. Michael, and P. A. V. Walree, "Simulation of an Underwater Acoustic Communication Channel Characterized by Wind-Generated Surface Waves and Bubbles," IEEE Journal of Oceanic Engineering, vol. 38, no. 4, pp. 642-654, Oct. 2013. https://doi.org/10.1109/JOE.2013.2278931
  6. D. B. Kilfoyle, and A. B. Baggeroer, "The State of the Art in Underwater Acoustic Telemetry," IEEE Journal of Oceanic Eng. vol 25, no. 4, 2000.
  7. M. Chitre, S. Shahabudeen, and M. Stojanovic, "Underwater acoustic communications and networking: recent advances and future challenges," J. Mar. Tech. Soc., vol. 42, pp. 103-116, 2008.
  8. M. Siderius, M. B. Poter, P. Hursky, V. McDonald, and the KauaiEx Group, "Effects of ocean thermocline variability on noncoherent underwater acoustic communications," J. Acoust. Soc. Am. vol. 121, no4, pp. 1895-1908. Apr. 2007. https://doi.org/10.1121/1.2436630
  9. J. Park, K. Park, and J. R. Yoon, "Underwater acoustic Communication Channel Simulator for Flat Fading," Jpn. J. Appl. Phys. vol 49, pp. 07HG10-1-07HG10-5, Jul. 2010.
  10. T.C.Yang, "Measurements of temporal coherence of sound transmissions through shallow water," J. Acoust. Soc. Am., vol.120, no.5, Pt.1 of 2, pp.2595-2614, Nov. 2006. https://doi.org/10.1121/1.2345910

Cited by

  1. Multipath Fading Channel Characterization and Performances of Forward Error Correction Codes in Very Shallow Water vol.19, pp.10, 2015, https://doi.org/10.6109/jkiice.2015.19.10.2247
  2. 부산인근 해역의 수중음향통신 채널특성과 다중반송파 시스템의 성능 vol.21, pp.12, 2014, https://doi.org/10.6109/jkiice.2017.21.12.2394
  3. 천해 음향 통신에서 이미지 향상을 위한 디노이징 오토인코더의 성능 평가 vol.25, pp.2, 2014, https://doi.org/10.6109/jkiice.2020.25.2.327