DOI QR코드

DOI QR Code

리튬 이차전지 음극용 CNT/Co3O4 나노복합체의 전기화학적 특성

Electrochemical Property of CNT/Co3O4 Nanocomposite for Anode of Lithium Batteries

  • 윤대호 (경기대학교 신소재공학과) ;
  • 박용준 (경기대학교 신소재공학과)
  • Yoon, Dae Ho (Department of Advanced Materials Engineering, Kyonggi University) ;
  • Park, Yong Joon (Department of Advanced Materials Engineering, Kyonggi University)
  • 투고 : 2014.06.27
  • 심사 : 2014.07.23
  • 발행 : 2014.08.31

초록

본 논문에서는 리튬이온 이차전지의 음극에 사용될 수 있는 $CNT/Co_3O_4$ 나노복합체의 합성과 전기화학적 특성에 대해 보고하고 있다. 고용량을 가진 산화물 음극 중 하나인 $Co_3O_4$의 부족한 전기 전도성을 보완하고 상변이 과정에서 발생하는 응력(stress)를 완충하기 위해 CNT와의 복합화가 시도되었다. 그 결과 카본나노튜브 표면에 수 nm 크기의 $Co_3O_4$를 균일하게 분산시켜 복합화 하는데 성공하였으며 제조된 $CNT/Co_3O_4$ 나노복합체는 우수한 고율특성과 안정적인 사이클 특성을 나타내었다. 또한 기존의 상용화된 음극물질인 흑연 보다 높은 방전용량을 가지고 있어 리튬이온 이차전지의 음극물질로 활용될 수 있는 가능성을 보여주었다.

In this article, we report the fabrication and characterization of $CNT/Co_3O_4$ nanocomposite for lithium ion batteries. We expected that the composition with CNT is effective method to compensate for the low electronic conductivity of $Co_3O_4$ and suppress the stress from phase transition of $Co_3O_4$ during cycling. $CNT/Co_3O_4$ nanocomposites were composed of nano-sized $Co_3O_4$ particles, which were homogeneously distributed on the surface of CNTs. The $CNT/Co_3O_4$ electrode presented higher capacity than commercial graphite, good rate capability and stable cyclic performance. This implies that the $CNT/Co_3O_4$ could be a promising anode material for lithium ion batteries.

키워드

참고문헌

  1. W. S. Cho, J. H. Song, S. M. Kim, D. J. Kim, M. G. Kang, J. S. Kim, and Y. J. Kim, J. Korean Electrochem. Soc. 4, 113(2013).
  2. D. H. Jang, K. Palanisamy, Y. O. Kim, and W. S. Yoon, J. Korean Electrochem. Soc. 4, 102(2013).
  3. S. Choi, J. B. Yoon, S. Muhammad, and W. S. Yoon, J. Korean Electrochem. Soc. 4, 34(2013).
  4. J. C. Choi, B. K. Son, M. H. Ryou, S. H. Kim, J. M. Ko, and Y. M. Lee, J. Korean Electrochem. Soc. 4, 27(2013).
  5. D. S. Kim, J. K. Kim, and J. H. Ahn, J. Korean Electrochem. Soc. 16, 157(2013). https://doi.org/10.5229/JKES.2013.16.3.157
  6. G. J. Seo, J. C. Choi, Y. N. Lee, and C. H. Ko, J. Korean Electrochem. Soc. 17, 86(2014). https://doi.org/10.5229/JKES.2014.17.2.86
  7. M. J. Hwang, W. J. Lee, C. H. Doh, and Y. G. Son, J. Korean Electrochem. Soc. 16, 85(2013). https://doi.org/10.5229/JKES.2013.16.2.85
  8. B. Han, S. J. Kim, B. M. Hwang, E. T. Hwang, H. C. Park, M. H. Koh, and K. W. Park, J. Korean Electrochem. Soc. 16, 81(2014). https://doi.org/10.5229/JKES.2013.16.2.81
  9. B. G. Kim, W. H. Shin, S. Y. Lim, B. S. Kong, and J. W. Choi, J. Korean Electrochem. Soc. 3, 116(2012).
  10. M. J. Kim, N. S. Choi, and S. S. Kim, J. Korean Electrochem. Soc. 17, 79(2014). https://doi.org/10.5229/JKES.2014.17.2.79
  11. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J. M. Tarascon, Nature 407, 496(2000). https://doi.org/10.1038/35035045
  12. P. Poizot, S. Laruelle, S. Grugeon, J.M. Tarascon, J. Electrochem. Soc. 149, A1212(2002). https://doi.org/10.1149/1.1497981
  13. V. Pralong, J. B. Leriche, B. Beaudoin, E. Naudin, M. Morcrette, and J. M. Tarascon, Solid State Ionics 166, 295(2004). https://doi.org/10.1016/j.ssi.2003.11.018
  14. Y. Liu and X. Zhang, Electrochim. Acta 54, 4180(2009). https://doi.org/10.1016/j.electacta.2009.02.060
  15. J. Wang, G. Du, R. Zeng, B. Niu, Z. Chen, Z. Guo, and S. Dou, Electrochim. Acta 55, 4805(2010). https://doi.org/10.1016/j.electacta.2010.03.048
  16. M. V. Reddy, B. Pecquenard, P. Inatier, and A. Levasseur, J. Phys. Chem. B 110, 4301(2006). https://doi.org/10.1021/jp0565554
  17. G. G. Wallace, J. Chen, A. J. Mozer, M. Forsyth, D. R. MacFarlane, and C. Y. Wang, Mater. Today 12, 20(2009).
  18. M. Hassan, M. M. Rahman, Z. Guo, Z. Chen, and H. Liu, Electrochim. Acta 55, 5006(2010). https://doi.org/10.1016/j.electacta.2010.04.006
  19. M. M. Rahman, J. Wanga, X. Deng, Y. Li, and H. Liu, Electrochim. Acta 55, 504(2009). https://doi.org/10.1016/j.electacta.2009.08.068
  20. K. S. Kim and Y. J. Park, Solid State Ionics. 225, 513(2012). https://doi.org/10.1016/j.ssi.2012.01.004
  21. C. S. Park and Y. J. Park, J. Korean Electrochem. Soc. 17, 124(2014). https://doi.org/10.5229/JKES.2014.17.2.124
  22. S. F. Zheng, J. S. Hu, L. S. Zhong, W. G. Song, L. J. Wan, and Y. G. Guo, Chem. Mater. 20, 3617(2008). https://doi.org/10.1021/cm7033855
  23. J. Shu, H. Li, R. Yang, Y. Shi, and X. Huang, Electrochem. Commun. 8, 51(2005).
  24. T. H. Yoon and Y. J. Park, J. Power Sources. 244, 344(2013). https://doi.org/10.1016/j.jpowsour.2013.01.023
  25. D. S. Kim and Y. J. Park, J. Alloys Compd. 575, 319(2013). https://doi.org/10.1016/j.jallcom.2013.05.178
  26. M. Hassan, M. M. Rahman, Z. Guo, Z. Chen, and H. Liu, Electrochim. Acta 55, 5006(2010). https://doi.org/10.1016/j.electacta.2010.04.006
  27. M. M. Rahman, J. Wanga, X. Deng, Y. Li, and H. Liu, Electrochim. Acta 55, 504(2009). https://doi.org/10.1016/j.electacta.2009.08.068
  28. T. H. Yoon and Y. J. Park, Solid State Ionics 225, 498(2011).