DOI QR코드

DOI QR Code

Physioelectrochemical Investigation of Electrocatalytic Activity of Modified Carbon Paste Electrode in Alcohol Oxidation as Anode in Fuel Cell

  • Shabani-Shayeh, Javad (Department of Chemistry, Faculty of science, K. N. Toosi University of Technology) ;
  • Ehsani, Ali (Department of Chemistry, Faculty of science, University of Qom) ;
  • Jafarian, Majid (Department of Chemistry, Faculty of science, K. N. Toosi University of Technology)
  • Received : 2014.03.10
  • Accepted : 2014.07.17
  • Published : 2014.08.31

Abstract

Methanol electro oxidation on the surface of carbon paste modified by $NiCl_2/6H_2O$ was studied in 1M NaOH by potentiostatic and potentiodynamic methods. Ni/C catalyst by the concentration of 5% Ni showed about twice higher electro catalytic activity than Ni metal. The amount of monolayer's on the surface of electrode is almost one order higher for Ni/C than Ni electrode. The kinetic parameters and the diffusion coefficient of methanol were derived from chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) measurements.

Keywords

References

  1. G. Cacciola, Antonucci V., and Freni S., J. Power Sources, 100, 67 (2001). https://doi.org/10.1016/S0378-7753(01)00884-9
  2. J. M. Andu' jar and F. Segura, Renew Sust Energ Rev, 13, 2309 (2009). https://doi.org/10.1016/j.rser.2009.03.015
  3. J. Ge and H. Liu, J. Power Sources, 142, 56 (2005). https://doi.org/10.1016/j.jpowsour.2004.11.022
  4. I. Danaee, M. Jafarian, A. Mirzapoor, F. Gobal, M. G. Mahjani, Electrochim Acta, 55, 2093 (2010). https://doi.org/10.1016/j.electacta.2009.11.039
  5. G. Orozco, M. C. Perez, A. Rincon, and C. Gutierrez, (2000) J. Electro Anal Chem, 495, 71 (2000). https://doi.org/10.1016/S0022-0728(00)00396-X
  6. L. Jiang, A. Hsu, D. Chu, and R. Chen, Int J. Hydrogen Energ 35, 365 (2010). https://doi.org/10.1016/j.ijhydene.2009.10.058
  7. Xu Yuan hang, A. Amini, and M. Schell, J. Electroanal Chem, 398, 95 (1995). https://doi.org/10.1016/0022-0728(95)04227-6
  8. S. Berchmans, H. Gomathi, and G. PrabhakaraRao, J. Electroanal Chem, 394, 267 (1995). https://doi.org/10.1016/0022-0728(95)04099-A
  9. F. Vogel, J. L. DiNaro Blanchard, P. A. Marrone, S. F. Rice, P. A. Webley, W. A. Peters, K. A. Smith, J. W. Tester, J. Supercrit Fluid, 34, 249 (2005). https://doi.org/10.1016/j.supflu.2003.12.018
  10. I. Beceryk, S. Suzer, and F. Kadirgan, J. Electroanal Chem 502:118 (2001). https://doi.org/10.1016/S0022-0728(00)00541-6
  11. T. Okada, Arimuran, C. Ono, and M. Yuasa, Electrochim Acta, 51, 1130 (2005). https://doi.org/10.1016/j.electacta.2005.05.054
  12. H. Heli, M. Jafarian, M. G. Mahjani, and F. Gobal F, Electrochim Acta, 49, 4999 (2004). https://doi.org/10.1016/j.electacta.2004.06.015
  13. A. Aramata and W. Veerasai, Electrochim Acta, 36, 1043 (1991). https://doi.org/10.1016/0013-4686(91)85313-V
  14. C. H. Lee, C. W. Lee, D. I. Kim, D. H. Jung, C. S. Kim, and D. RyulShin, J. Power Sources, 86, 478 (2000). https://doi.org/10.1016/S0378-7753(99)00442-5
  15. W. Tokarz, H. Siwek, P. Piela, and A. Czerwinsky, Electrochim Acta, 52, 5565 (2007). https://doi.org/10.1016/j.electacta.2006.12.016
  16. I. Danaee, M. Jafarian, F. Forouzandeh, F. Gobal, and M. G. Mahjani, Int. J. Hydrogen Energ, 34, 859 (2009). https://doi.org/10.1016/j.ijhydene.2008.10.067
  17. M. A. Abdel Rahim, R. M. Abdel Hameed, and M. W. Khalil, J. Power Sources, 134, 160 (2004). https://doi.org/10.1016/j.jpowsour.2004.02.034
  18. A. Nozad Golikand, M. Asgari, M. Ghannadi Maragheh, and S. Shahrokhian, J. Electroanal Chem, 588, 155 (2006). https://doi.org/10.1016/j.jelechem.2005.11.033
  19. J. Raoof, A. Omrani, R. Ojani, and F. Monfared, J. Electroanal Chem, 633, 153 (2009). https://doi.org/10.1016/j.jelechem.2009.05.016
  20. R. Ojani, J. Raoof, and S. Fathi, J. Solid State Electr, 13, 927 (2009). https://doi.org/10.1007/s10008-008-0626-z
  21. R. Ojani, J. Raoof, and P. Salmany-Afagh, J. Electroanal Chem, 571, 1 (2004). https://doi.org/10.1016/j.jelechem.2004.03.032
  22. J. Taraszewska and G. Roslonek, J. Electroanal Chem, 364, 209 (1994). https://doi.org/10.1016/0022-0728(93)02919-9
  23. R. M. Van Effen and D. H Evans, J. Electroanal Chem., 103, 383 (1979). https://doi.org/10.1016/S0022-0728(79)80362-9
  24. A. J. Motheo, S. A. S. Machado, F. J. B. Rabelo, and Jr. Santos, J. Brazil Chim Soc, 5,161 (1994). https://doi.org/10.5935/0103-5053.19940028
  25. M. Fleischmann, K. Korinek, and D. Pletcher, J. Electroanal Chem, 31, 39 (1971). https://doi.org/10.1016/S0022-0728(71)80040-2
  26. A. A. El-Shafei, J. Electroanal Chem., 471, 89 (1999). https://doi.org/10.1016/S0022-0728(99)00235-1
  27. A. Hamnett, CATAL TODAY, 38, 445 (1997). https://doi.org/10.1016/S0920-5861(97)00054-0
  28. A. Ehsani, B. Jaleh, and M. Nasrollahzadeh, J. Power Sources, 257, 300 (2014). https://doi.org/10.1016/j.jpowsour.2014.02.010
  29. M. Nasrollahzadeh, A. Ehsani, A. Rostami-Vartouni, Ultrasound Sonochem, 21, 275 (2014). https://doi.org/10.1016/j.ultsonch.2013.07.012
  30. A. Ehsani, F. Babaei, and M. Nasrollahzadeh, Applied Surface Science, 283, 1060 (2013). https://doi.org/10.1016/j.apsusc.2013.07.067
  31. A. Ehsani, M. G. Mahjani, M. Bordbar, S. Adeli, J. Electroanal. Chem., 710, 29 (2013). https://doi.org/10.1016/j.jelechem.2013.01.008
  32. M. Mahjani, A. Ehsani, M. Jafarian, SYNTH. METH, 160, 1252 (2010). https://doi.org/10.1016/j.synthmet.2010.03.019
  33. A. Ehsani, M. Nasrollahzadeh, MG. Mahjani, R. Moshrefi, H. Mostaanzadeh, J. Ind. Eng. Chem, doi:10.1016/ j.jiec.2014.01.045.
  34. A. Ehsani, M. G. Mahjani, R. Moshrefi, H. Mostaanzadeh, and J. Shabani Shayeh, RSC Adv., 4, 38, 20031 - 20037 (2014). https://doi.org/10.1039/c4ra01029a
  35. A. Ehsani, M. G. Mahjani, and M. Jafarian, Turkish Journal of Chemistry, 35, 1 (2011).
  36. A. Ehsani, M. G. Mahjani, M. Jafarian, A. Naeemy A, Progress Organic Coating, 69, 510 (2010). https://doi.org/10.1016/j.porgcoat.2010.09.007
  37. A. Ehsani, M. G. Mahjani, and Jafarian, Synth Met., 161, 1760 (2011) https://doi.org/10.1016/j.synthmet.2011.06.020
  38. A. Ehsani A, M. G. Mahjani, and Jafarian (2012) Synth Met., 162, 199 (2012). https://doi.org/10.1016/j.synthmet.2011.11.032
  39. A. Ehsani, M. G. Mahjani, M. Jafarian, and A. Naeemy, Electrochim Acta., 71, 128 (2012). https://doi.org/10.1016/j.electacta.2012.03.107
  40. A. R. Feizbakhsh, A. Naeemy, A. Ehsani, A. Aghasi, and I. Danaee, J. Chiness Chem. Soc., 59, 1086 (2012) https://doi.org/10.1002/jccs.201100570
  41. A. Ehsani, S. Adeli, F. Babaei, H. Mostaanzadeh, M. Nasrollahzadeh (2014) J. Electroanal Chem., 713, 91 (2014). https://doi.org/10.1016/j.jelechem.2013.12.003

Cited by

  1. Effect of thickness on the capacitive behavior and stability of ultrathin polyaniline for high speed super capacitors vol.52, pp.10, 2016, https://doi.org/10.1134/S1023193516100128
  2. Physioelectrochemical investigation of the supercapacitive performance of a ternary nanocomposite by common electrochemical methods and fast Fourier transform voltammetry vol.39, pp.12, 2015, https://doi.org/10.1039/C5NJ01954K
  3. Physicoelectrochemical properties of facilely electrosynthesized reduced graphene oxide/p-type conductive polymer nanocomposite film vol.40, pp.3, 2016, https://doi.org/10.1039/C5NJ02969D
  4. Green Synthesized Cobalt Nano Particles for using as a Good Candidate for Sensing Organic Compounds vol.6, pp.4, 2015, https://doi.org/10.5229/JECST.2015.6.4.111
  5. Continuous fast Fourier transform admittance voltammetry as a new approach for studying the change in morphology of polyaniline for supercapacitors application vol.5, pp.102, 2015, https://doi.org/10.1039/C5RA11962F
  6. Electrochemical study of supercapacitor performance of polypyrrole ternary nanocomposite electrode by fast Fourier transform continuous cyclic voltammetry vol.5, pp.116, 2015, https://doi.org/10.1039/C5RA18694C
  7. Conductive polymer/reduced graphene oxide/Au nano particles as efficient composite materials in electrochemical supercapacitors vol.353, 2015, https://doi.org/10.1016/j.apsusc.2015.06.066
  8. A novel route for electrosynthesis of CuCr 2 O 4 nanocomposite with p-type conductive polymer as a high performance material for electrochemical supercapacitors vol.496, 2017, https://doi.org/10.1016/j.jcis.2017.02.010
  9. Electrochemical properties, optical modeling and electrocatalytic activity of pulse-electropolymerized ternary nanocomposite of poly (methylene blue) in aqueous solution vol.215, 2016, https://doi.org/10.1016/j.molliq.2015.12.023