DOI QR코드

DOI QR Code

항원인 마뇨산에 결합된 도파민을 이용한 전기화학적 면역 분석법

Electrochemical Immunoassay based on the Dopamine-antigen Conjugate for Detecting Hippuric Acid

  • 최영봉 (단국대학교 자연과학대학 화학과) ;
  • 전원용 (단국대학교 나노바이오의과학과) ;
  • 김혁한 (단국대학교 자연과학대학 화학과)
  • Choi, Young-Bong (Department of chemistry, College of Advanced Science, Dankook University) ;
  • Jeon, Won-Yong (Department of Nanobiomedical Science & WCU Research Center, Dankook University) ;
  • Kim, Hyug-Han (Department of chemistry, College of Advanced Science, Dankook University)
  • 투고 : 2014.07.16
  • 심사 : 2014.08.05
  • 발행 : 2014.08.31

초록

이 논문에서는 체내에 존재하는 작은 유기물의 하나인 마뇨산을 빠르고 정량적으로 검출하기 위하여 전기화학적 면역분석법을 이용하였다. 마뇨산은 톨루엔이 인체에 노출되었을 때의 주된 신진 대사 물질로서 대표적인 생화학적 지표물질이다. 톨루엔 노출에 대한 신속하고 정확한 관찰은 산업현장에서 건강관리를 위하여 매우 중요하다. 그래서 마뇨산을 빠르고 정확하게 검출하기 위하여 전기화학적 면역분석법을 실시하였다. 본 연구에서 제시하는 새로운 면역분석방법은 전기화학적 활성물질의 하나인 도파민을 측정물질인 마뇨산과 직접 공유결합을 통하여 항원이 포함된 복합체를 합성하였다. 전기화학적 측면에서 도파민은 두 개의 하이드록시기를 가지고 있어 매우 뛰어난 산화/환원 신호를 보인다. 또한 도파민-마뇨산 복합물도 뛰어난 산화/환원 신호를 보이기 때문에 면역 분석에 적합하다. 도파민-마뇨산 복합물과 마뇨산의 항체와의 균질경쟁반응을 전기화학적인 방법을 통하여 관찰하였다. 본 면역분석을 통하여 실시한 결과는 마뇨산의 농도가 0.010~2.500 mg/mL 까지 정량적으로 분석됨으로써 실제 면역 센서에 적용할 수 있음을 확인하였다.

In this work, we describe an electrochemical immunosensor for simple, fast and quantitative detection of a urinary hippuric acid (HA). Urinary HA, of molecular weight 180 DA, is one of the major metabolites and biological indicators in toluene-exposed humans. Simple and ubiquitous monitoring of exposure to toluene is very important in occupational health care. We propose the electrochemical immunoassay based on the dopamine-antigen conjugate for detecting hippuric acid. Our electrochemical immunoassay system employs a conjugate of dopamine (DA) as an electrochemical active molecule and hippuric acid (HA) as an antigen. As an electrochemical aspect, dopamine (DA) containing two hydroxyl group can show excellent redox signal. Also, dopamine-tethered hippuric acid (DA-HA) shows the reversible redox signal in the immunoassay. The competition between HA and DA-HA generated electric signals proportional to HA concentration. The electrochemical immunoassay was performed with DA-HA on the screen printed carbon electrodes (SPCEs), and then applies the mixture antigen (HA) and HA-antibody. The electrical signals were proportional to HA in the range of 0.010~2.500 mg/mL which is enough range to be used for the point-of-care.

키워드

참고문헌

  1. X. M. Pei, B. Zhang, J. Tang, B. Q. Liu, W. Q. Lai, and D. P. Tang, 'Sandwich-type immunosensors and immunoassays exploiting nanostructure labels: A review' Anal. Chim. Acta., 758, 1 (2013). https://doi.org/10.1016/j.aca.2012.10.060
  2. Q. Gao, J. M. Han, and Z. F. Ma, 'Polyamidoamine dendrimers-capped carbon dots/Au nanocrystal nanocomposites and its application for electrochemical immunosensor' Biosens. Bioelectron., 49, 323 (2013). https://doi.org/10.1016/j.bios.2013.05.048
  3. A. Warsinke, A. Benkert, and F. W. Scheller, 'Electrochemical Immunoassay' Anal. Chem., 366, 622 (2000). https://doi.org/10.1007/s002160051557
  4. L. Ding, A. M. Bond, J. P. Zhai, and J. Zhang, 'Utilization of nanoparticle labels for signal amplification in ultrasensitive electrochemical affinity biosensors: A review' Anal. Chim. Acta., 797, 1 (2013). https://doi.org/10.1016/j.aca.2013.07.035
  5. L. J. Bai, R. Yuan, Y. Q. Chai, Y. Zhuo, Y. L. Yuan, and Y. Wang, 'Simultaneous electrochemical detection of multiple analytes based on dual signal amplification of single-walled carbon nanotubes and multi-labeled graphene sheets' Biomaterials., 33, 1090 (2012). https://doi.org/10.1016/j.biomaterials.2011.10.012
  6. J. M. Fowler, D. K. Y. Wong, H. B. Halsall, and W. R. Heineman, "Recent Developments in Electrochemical immunoassay and Immunosensors", 115, Elsevier, Oxford, (2008).
  7. J. Yakovleva and J. Emneus, "Electrochemical Immunoassays", 377, Wiley, Chichester, (2008).
  8. M. Dequaire, C. Degrand, and B. Limoges, 'An Immunomagnetic Electrochemical Sensor Based on a Perfluorosulfonate-Coated Screen-Printed Electrode for the Determination of 2,4-Dichlorophenoxyacetic Acid' Anal. Chem., 71, (1999).
  9. L. J. Kricka, "Advantages and Disadvantages of Different Labels in Immunoassay", 37, American Chemical Society for Microbiology, Washington, DC, (1992).
  10. K. Di Gleria, H. A. O. Hill, C. J. McNeil, and M. J. Green, 'Homogeneous ferrocene-mediated amperometric immunoassay' Anal. Chem., 58, 1203 (1986). https://doi.org/10.1021/ac00297a050
  11. H. Funabashi, Y. Tanaka, Y. Imamura, M. Mie, T. Manabe, H. Tanaka, T. Takahashi, H. Handa, M. Aizawa, and E. Kobatake, 'Glucose oxidase assisted homogeneous electrochemical receptor binding assay for drug screening' Biosens. Bioelectron., 21, 1675 (2006). https://doi.org/10.1016/j.bios.2005.08.002
  12. E. M. Alvarez-Leite, A. Duarte, N. M. Barroca, and N. S. Silveira, 'Possible Effects of Drinking and Smoking Habits on Hippuric Acid Levels in Urine of Adults with No Occupational Toluene Exposure' J. Occup. Health., 41, 112 (1999). https://doi.org/10.1539/joh.41.112
  13. H. M. Park, S. H. Lee, H. S. Chung, O. H. Kwon, K. Y. Yoo, H. H. Kim, S. C. Heo, J. S. Park, and G. S. Tae, 'Immunochromatographic Analysis of Hippuric Acid in Urine' J. Anal. Toxicol., 31, 347 (2007). https://doi.org/10.1093/jat/31.6.347
  14. N. J. Forrow, N. C. Foulds, J. E. Frew, and J. T. Law, 'Synthesis, Characterization, and Evaluation of Ferrocene-Theophylline Conjugates for Use in Electrochemical Enzyme Immunoassay' Bioconjugate Chem., 15, 137 (2004). https://doi.org/10.1021/bc034131b
  15. I. A. Alam and G. D. Christian, 'Voltammetric Determination of Lead Labelled Albumin and of Albumin Antiserum by Immunoassay' Anal. Lett., 15, 1449 (1982). https://doi.org/10.1080/00032718208065136
  16. W. Y. Jeon, Y. B. Choi, and H. H. Kim, 'Homogeneous Electrochemical Detection of Hippuric Acid in Urine Based on the Osmium-Antigen Conjugate' ChemphysChem., 14, 2331 (2013). https://doi.org/10.1002/cphc.201300039
  17. D. Zhan, S. Mao, Q. Zhao, Z. Chen, H. Hu, P. Jing, M. Zhang, Z. Zhu, and Y. Shao, 'Electrochemical Investigation of Dopamine at the Water/1,2-Dichloro-ethane Interface' Anal. Chem., 76, 4128 (2004). https://doi.org/10.1021/ac035339t
  18. T. Luczak, 'Preparation and characterization of the dopamine film electrochemically deposited on a gold template and its applications for dopamine sensing in aqueous solution' Electrochimica Acta., 53, 5725 (2008). https://doi.org/10.1016/j.electacta.2008.03.052
  19. Z. Su, Y. Liu, Q. Xie, L. Chen, Y. Zhang, Y. Meng, Y. Li, Y. Fu, M. Ma, and S. Yao, 'Preparation of thiolated polymeric nanocomposite for sensitive electroanalysis of dopamine' Biosens. Bioelectron., 36. 154 (2012). https://doi.org/10.1016/j.bios.2012.04.005
  20. F. Shang, L. Zhou, K. A. Mahmoud, S. Hrapovic, Y. Liu, H. A. Moynihan, J. D. Glennon, and J. H. T. Luong, 'Selective Nanomolar Detection of Dopamine Using a Boron-Doped Diamond Electrode Modified with an Electropolymerized Sulfobutylether-${\beta}$-cyclodextrin-Doped Poly(N-acetyltyramine) and Polypyrrole Composite Film' Anal. Chem., 81, 4089 (2009). https://doi.org/10.1021/ac900368m
  21. J. Wang, J. Llu, L. Chen, and F. Lu, 'Highly Selective Membrane-Free, Mediator-Free Glucose Biosensor' Anal. Chem., 66, 3600 (1994). https://doi.org/10.1021/ac00093a011