DOI QR코드

DOI QR Code

Trifluoropropyltrimethoxysilane as an Electrolyte Additive to Enhance the Cycling Performances of Lithium-Ion Cells

Trifluoropropyltrimethoxysilane 전해질 첨가제를 이용한 리튬이온전지의 싸이클 특성 향상

  • Shin, Won-Kyung (Department of Chemical Engineering, Hanyang University) ;
  • Park, Se-Mi (Department of Chemical Engineering, Hanyang University) ;
  • Kim, Dong-Won (Department of Chemical Engineering, Hanyang University)
  • Received : 2014.07.03
  • Accepted : 2014.07.19
  • Published : 2014.08.31

Abstract

In this study, we tried to improve the cycling performance of lithium-ion batteries by suppressing decomposition of the electrolyte solution containing fluorsilane-based additive. Trifluoropropyltrimethoxysilane was electrochemically oxidized and reduced prior to the decomposition of the liquid electrolyte composed of lithium salt and carbonate-based organic solvent. Thus, the stable solid electrolyte interphase (SEI) layer on both negative electrode and positive electrode was formed, and it was confirmed that the cycling performance of lithium-ion batteries assembled with electrolyte solution containing 5 wt.% trifluoropropyltrimethoxysilane was the mostly enhanced. The products formed on electrodes were analyzed by the SEM and XPS analysis, and it was demonstrated that trifluoropropyltrimethoxysilane can be one of the promising SEI-forming additives.

본 연구에서는 불소계 실란을 첨가제로 사용하여 전해액의 열화 반응을 억제함으로써 리튬이온전지의 싸이클 특성을 향상시키고자 하였다. 첨가제로 사용된 trifluoropropyltrimethoxysilane은 리튬염과 카보네이트계 유기 용매로 이루어진 액체 전해질보다 전기화학적 산화, 환원 분해반응이 먼저 일어나 음극 및 양극 표면에서 안정적인 고체전해질계면 (solid electrolyte interphase, SEI) 막을 형성하며, 5 wt.%의 첨가제를 포함하는 경우 가장 우수한 전기화학적 특성을 나타내었다. SEM 및 XPS 분석을 통해 전극 표면에 생성된 피막의 화학 성분을 분석하였으며, 이들 결과로부터 새로운 SEI 형성 첨가제로서 불소계 실란의 가능성을 확인하였다.

Keywords

References

  1. K. Xu, 'Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries' Chem. Rev., 104, 4303 (2004). https://doi.org/10.1021/cr030203g
  2. E. Peled, 'The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems - The Solid Electrolyte Interphase Model' J. Electrochem. Soc., 126, 2047 (1979). https://doi.org/10.1149/1.2128859
  3. K. Xu and A. von Cresce, 'Interfacing electrolytes with electrodes in Li ion batteries' J. Mater. Chem., 21, 9849 (2011). https://doi.org/10.1039/c0jm04309e
  4. S. S. Zhang, 'A review on electrolyte additives for lithium-ion batteries' J. Power Sources, 162, 1379 (2006). https://doi.org/10.1016/j.jpowsour.2006.07.074
  5. D. Aurbach, K. Gamolsky, B. Markovsky, Y. Gofer, M. Schmidt, and U. Heider, 'On the use of vinylene carbonate as an additive to electrolyte solutions for Li-ion batteries' Electrochim. Acta, 47, 1423 (2002). https://doi.org/10.1016/S0013-4686(01)00858-1
  6. L. El Ouatani, R. Dedryvere, C. Siret, P. Biensan, S. Reynaud, P. Iratcabal, and D. Gonbeau, 'The Effect of Vinylene Carbonate Additive on Surface Film Formation on Both Electrodes in Li-Ion Batteries' J. Electrochem. Soc., 156, A103 (2009). https://doi.org/10.1149/1.3029674
  7. I. A. Profatilova, S.-S. Kim, and N.-S. Choi, 'Enhanced thermal properties of the solid electrolyte interphase formed on graphite in an electrolyte with fluoroethylene carbonate' Electrochim. Acta, 54, 4445 (2009). https://doi.org/10.1016/j.electacta.2009.03.032
  8. L. Liao, P. Zuo, Y. Ma, Y. An, G. Yin, and Y. Gao, 'Effects of fluoroethylene carbonate on low temperature performance of mesocarbon microbeads anode' Electrochim. Acta, 74, 260 (2012). https://doi.org/10.1016/j.electacta.2012.04.085
  9. A. Norbert and W. Johann, "Organosilicon Chemistry VI", 770, Wiley-VCH Verlag GmbH, Germany (2008).
  10. G. Schroeder, B. Gierczyk, D. Waszak, M. Kopczyk, and M. Walkowiak, 'Vinyl tris-2-methoxyethoxy silane - A new class of film-forming electrolyte components for Liion cells with graphite anodes' Electrochem. Commun., 8, 523 (2006). https://doi.org/10.1016/j.elecom.2006.01.021
  11. G. Schroeder, B. Gierczyk, D. Waszak, and M. Walkowiak, 'Impact of ethyl tris-2-methoxyethoxy silane on the passivation of graphite electrode in Li-ion cells with PC-based electrolyte' Electrochem. Commun., 8, 1583 (2006). https://doi.org/10.1016/j.elecom.2006.07.030
  12. Q. Xia, B. Wang, Y. P. Wu, H. J. Luo, S. Y. Zhao, and T. van Ree, 'Phenyl tris-2-methoxydiethoxy silane as an additive to PC-based electrolytes for lithium-ion batteries' J. Power Sources, 180, 602 (2008). https://doi.org/10.1016/j.jpowsour.2008.01.039
  13. Y. M. Lee, J. E. Seo, Y.-G. Lee, S. H. Lee, K. Y. Cho, and J.-K. Park, 'Effects of Triacetoxyvinylsilane as SEI Layer Additive on Electrochemical Performance of Lithium Metal Secondary Battery' Electrochem. Solid-State Lett., 10, A216 (2007). https://doi.org/10.1149/1.2750439
  14. Y. G. Ryu, S. Lee, S. Mah, D. J. Lee, K. Kwon, S. Hwang, and S. Doo, 'Electrochemical Behaviors of Silicon Electrode in Lithium Salt Solution Containing Alkoxy Silane Additives' J. Electrochem. Soc., 155, A583 (2008). https://doi.org/10.1149/1.2940310
  15. S. W. Song and S.-W. Baek, 'Silane-Derived SEI Stabilization on Thin-Film Electrodes of Nanocrystalline Si for Lithium Batteries' Electrochem. Solid-State Lett., 12, A23 (2009). https://doi.org/10.1149/1.3028216
  16. L.L. Li, L.Li, B. Wang, L.L. Liu, Y.P. Wu, T. van Ree, and K.A. Thavhiwa, 'Methyl phenyl bismethoxydiethoxysilane as bi-functional additive to propylene carbonate-based electrolyte for lithium ion batteries' Electrochim. Acta, 56, 4858 (2011). https://doi.org/10.1016/j.electacta.2011.02.117
  17. H. P. Zhang, Q. Xia, B. Wang, L. C. Yang, Y. P. Wu, D. L. Sun, C. L. Gan, H. J. Luo, A. W. Bebeda, and T. v. Ree, 'Vinyl-Tris-(methoxydiethoxy)silane as an effective and ecofriendly flame retardant for electrolytes in lithium ion batteries' Electrochem. Commun., 11, 526 (2009). https://doi.org/10.1016/j.elecom.2008.11.050
  18. S. U. Woo, C. S. Yoon, K. Amine, I. Belharouak, and Y. K. Sun, 'Significant improvement of electrochemical performance of $AlF_3$-coated Li[$Ni_{0.8}Co_{0.1}Mn_{0.1}]O_2$ cathode materials' J. Electrochem. Soc., 154, A1005 (2007). https://doi.org/10.1149/1.2776160
  19. S. Y. Bae, E. G. Shim, and D. W. Kim, 'Effect of ionic liquid as a flame-retarding additive on the cycling performance and thermal stability of lithium-ion batteries' J. Power Sources, 244, 266 (2013). https://doi.org/10.1016/j.jpowsour.2013.01.100
  20. S. Y. Bae, W. K. Shin, and D. W. Kim, 'Protective organic additives for high voltage $LiNi_{0.5}Mn_{1.5}O_4$ cathode materials' Electrochim. Acta, 125, 497 (2014). https://doi.org/10.1016/j.electacta.2014.01.124
  21. S. Leroy, F. Blanchard, R. Dedryvere, H. Martinez, B. Carre, D. Lemordant, and D. Gonbeau, 'Surface film formation on a graphite electrode in Li-ion batteries: AFM and XPS study' Surf. Interface Anal., 37, 773 (2005). https://doi.org/10.1002/sia.2072
  22. P. Verma, P. Maire, and P. Novak, 'A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries' Electrochim. Acta, 55, 6332 (2010). https://doi.org/10.1016/j.electacta.2010.05.072
  23. I. Milosev, Z. Jovanovic, J. B. Bajat, R. Jancic-Heinemann, and V. B. Miskovic-Stankovic, 'Surface Analysis and Electrochemical Behavior of Aluminum Pretreated by Vinyltriethoxysilane Films in Mild NaCl Solution' J. Electrochem. Soc., 159, C303 (2012). https://doi.org/10.1149/2.042207jes