DOI QR코드

DOI QR Code

Recent Progress in Layer-by-layer Assembly of Nanomaterials for Electrochemical Energy Storage Applications

  • Kim, Sung Yeol (School of Mechanical Engineering, Kyungpook National University)
  • 투고 : 2014.07.22
  • 심사 : 2014.08.07
  • 발행 : 2014.08.31

초록

Electrochemical energy-storage devices such as batteries and supercapacitors are important components in emerging portable electronic device, electric vehicle, and clean energy storage and supply technologies. This review describes recent progress in the development of nanostructured electrodes, the main component of the electrochemical energy-storage device, prepared by layer-by-layer (LbL) electrostatic assembly. Major advantages associated with, and challenges to, the fabrication of LbL electrodes, as well as the future outlook for expanding the application of LbL techniques, are discussed.

키워드

참고문헌

  1. G. Decher, Science, 277, 1232-1237 (1997). https://doi.org/10.1126/science.277.5330.1232
  2. P. T. Hammond, Curr Opin Colloid In, 4, 430-442 (1999). https://doi.org/10.1016/S1359-0294(00)00022-4
  3. S. W. Lee, B. M. Gallant, H. R. Byon, P. T. Hammond, and Y. Shao-Horn, Energy Environ. Sci., 4, 1972-1985 (2011). https://doi.org/10.1039/c0ee00642d
  4. Y. Xiang, S. F. Lu, and S. P. Jiang, Chem. Soc. Rev., 41, 7291-7321 (2012). https://doi.org/10.1039/c2cs35048c
  5. F. F. Xia, X. L. Hu, Y. M. Sun, W. Luo, and Y. H. Huang, Nanoscale, 4, 4707-4711 (2012). https://doi.org/10.1039/c2nr30742a
  6. S. Y. Kim, J. Hong, R. Kavian, S. W. Lee, M. N. Hyder, Y. Shao-Horn, and P. T. Hammond, Energy Environ. Sci., 6, 888-897 (2013). https://doi.org/10.1039/c2ee23318e
  7. S. W. Lee, B. S. Kim, S. Chen, Y. Shao-Horn, and P. T. Hammond, J. Am Chem Soc., 131, 671-679 (2009). https://doi.org/10.1021/ja807059k
  8. H. R. Byon, S. W. Lee, S. Chen, P. T. Hammond, and Y. Shao-Horn, Carbon, 49, 457-467 (2011). https://doi.org/10.1016/j.carbon.2010.09.042
  9. S. W. Lee, N. Yabuuchi, B. M. Gallant, S. Chen, B. S. Kim, P. T. Hammond, and Y. Shao-Horn, Nat Nanotechnol., 5, 531-537 (2010). https://doi.org/10.1038/nnano.2010.116
  10. J. Hong, J. Y. Han, H. Yoon, P. Joo, T. Lee, E. Seo, K. Char, and B. S. Kim, Nanoscale, 3, 4515-4531 (2011). https://doi.org/10.1039/c1nr10575b
  11. T. Lee, T. Yun, B. Park, B. Sharma, H. K. Song, and B. S. Kim, J. Mater Chem., 22, 21092-21099 (2012). https://doi.org/10.1039/c2jm33111j
  12. M. N. Hyder, B. M. Gallant, N. J. Shah, Y. Shao-Horn, and P. T. Hammond, Nano Lett., 13, 4610-4619 (2013). https://doi.org/10.1021/nl401387s
  13. J. Y. Jingjing Tang, Limin Zhou, Jing Xie, Guanghui Chena, and Xiangyang Zhou, J. Mater. Chem. A, 2, 6292-6295 (2014). https://doi.org/10.1039/c4ta00495g
  14. M. N. Hyder, S. W. Lee, F. C. Cebeci, D. J. Schmidt, Y. Shao-Horn, and P. T. Hammond, Acs Nano, 5, 8552-8561 (2011). https://doi.org/10.1021/nn2029617
  15. J. W. Jeon, J. O'Neal, L. Shao, and J. L. Lutkenhaus, ACS Appl. Mater. Interfaces, 5, 10127-10136 (2013). https://doi.org/10.1021/am402809e
  16. J. F. Mike and J. L. Lutkenhaus, J. Polym. Sci. Pt. B-Polym. Phys., 51, 468-480 (2013). https://doi.org/10.1002/polb.23256
  17. L. Shao, J. W. Jeon, and J. L. Lutkenhaus, Chem. Mat., 24, 181-189 (2012). https://doi.org/10.1021/cm202774n
  18. L. Shao, J. W. Jeon, and J. L. Lutkenhaus, J. Mater. Chem. A, 1, 7648-7656 (2013). https://doi.org/10.1039/c3ta10961e
  19. S. W. Lee, J. Kim, S. Chen, P. T. Hammond, and Y. Shao-Horn, Acs Nano, 4, 3889-3896 (2010). https://doi.org/10.1021/nn100681d
  20. A. Nyman, T. G. Zavalis, R. Elger, M. Behm, and G. Lindbergh, J. Electrochem Soc., 157, A1236-A1246 (2010). https://doi.org/10.1149/1.3486161
  21. H. G. Zhang, X. D. Yu, and P. V. Braun, Nat Nanotechnol., 6, 277-281 (2011). https://doi.org/10.1038/nnano.2011.38
  22. B. Mu, P. Liu, and A. Q. Wang, Electrochim. Acta., 88, 177-183 (2013). https://doi.org/10.1016/j.electacta.2012.10.025