DOI QR코드

DOI QR Code

Studies on Optical-fiber Sensor to Monitor Temperature using Reversible Thermochromic Gel Type Cobalt (II) Chloride/Polyvinyl Butyral

가역 감온 변색 겔형 염화 코발트/polyvinyl butyral을 이용한 온도 감지 광섬유 센서 연구

  • Hwang, KiSeob (Korea Institute of Industrial Technology) ;
  • Park, JeaHee (Department of Electronic Engineering, Keimyung University) ;
  • Ha, KiRyong (Department of Chemical Engineering, Keimyung University) ;
  • Lee, JunYoung (Korea Institute of Industrial Technology)
  • Received : 2014.01.26
  • Accepted : 2014.03.03
  • Published : 2014.08.01

Abstract

In this study, we developed an optical-fiber sensor using cobalt chloride solution to monitor temperature in real-time between long distance points unaffected by the electro-magnetic wave and the vibration. Cobalt chloride solutions were made using 10% water and 90% ethanol (v/v) solution. The transmittance of these solutions was analyzed on 655 nm using UV-Visible spectrometer regarding temperature change. Also 30.8 mM cobalt chloride solution was gelled by dissolving polyvinyl butyral and the transmittance of this was analyzed on 655 nm regarding temperature change. The results of transmittance and optical power measurement showed decrease of both transmittance and optical power with increase of temperature from 66.8% and 149.5 nW at $25^{\circ}C$ to 7.1% and 48 nW at $70^{\circ}C$, respectively. These results support the possibility of gelled cobalt chloride/polyvinyl butyral as an optical-fiber sensor to monitor temperature change.

염화코발트 용액을 사용하여 전자기파와 진동에 영향을 받지 않는 원거리 실시간 광섬유 온도 감지 센서를 개발하였다. 염화코발트 용액을 제조하기 위하여, 물과 에탄올은 부피 비율로 10%와 90%로 고정하고, 용해되는 염화코발트의 양을 다양하게 변화시켰다. 제조된 염화코발트 용액은 자외-가시선 분광 광도계를 사용하여, 온도 변화에 따른 655 nm 파장의 투과도를 측정하였다. 또한 제조된 30.8 mM 염화코발트 수화물 용액에 polyvinyl butyral을 용해시켜 겔화한 후, 온도 변화에 따른 655 nm 파장의 투과도 측정 및 센서 적용 후 광 파워 분석을 실시하였다. 투과도와 광 파워 측정 결과, $25^{\circ}C$에서 66.8%와 149.5 nW, $70^{\circ}C$에서는 7.1%와 48 nW로 각각 나타나, 온도가 증가함에 따라 투과도와 광 파워 모두 감소하는 경향을 보였다. 본 실험에서 제조된 겔화 염화코발트/polyvinyl butyral은 온도 변화에 따라 655 nm 파장에 대한 광 투과도와 광 파워가 변하는 점을 이용하여 온도 변화를 감지하기 위한 광섬유 센서로 사용 가능함을 확인하였다.

Keywords

References

  1. Park, B. W., Yoon, D. Y. and Kim, D. S., "Optical Communication and Sensing Modules for Plastic Optical Fibers," Korean Chem. Eng. Res., 47, 558-564(2009).
  2. Shao, L.-Y., Shevchenko Y. and Jacques A., "Intrinsic Temperature Sensitivity of Tilted Fiber Bragg Grating Based Surface Plasmon Resonance Sensors," Opt. Exp., 18, 11464-11471(2010). https://doi.org/10.1364/OE.18.011464
  3. Choi, H. Y., Park, K. S., Park, S. J., Peak, U. C., Lee, B. H. and Choi, E. S., "Miniature Fiber-optic High Temperature Sensor Based on a Hybrid Structured Fabry-Perot Interferometer," Opt. Lett., 33, 2455-2457(2008). https://doi.org/10.1364/OL.33.002455
  4. Braginsky, V. B., Strigin, S. E. and Vyatchanin, S. P., "Parametric Oscillatory Instability in Fabry-Perot Interferometer," Phys. Lett. A, 287, 331-338(2001). https://doi.org/10.1016/S0375-9601(01)00510-2
  5. David, R. and Hunter, I. W., "A Liquid-in-glass Thermometer Read by an Interferometer," Sens. Act. A, 121, 31-34(2005). https://doi.org/10.1016/j.sna.2004.12.003
  6. Nakai, T., Ueno, Y., Kaneko, K., Tanahashi, S. and Takeda, S., "A Siloxane Polymer Lightwave Circuit on Ceramic Substrate Applicable to Ultrafast Optoelectronic Multi-chip-modules," Opt. Quant. Elect., 33, 1113-1124(2001). https://doi.org/10.1023/A:1017566105876
  7. Tapia-Mercado, J., Khomenko, A. V. and Garcia-Weidner, A., "Precision and Sensitivity Optimization for White-Light Interferometric Fiber-Optics Sensors," J. Lightwave Technol., 19, 70-74 (2001). https://doi.org/10.1109/50.914487
  8. Brambilla, G., "High-temperature Fiber Bragg Grating Thermometer," Elec. Lett., 38, 954-956(2002). https://doi.org/10.1049/el:20020662
  9. Wolithuis, R. A., Mitchell, G. L., Saaski, E., Hartl, J. C. and Afromowitz, M. A., "Development of Medical Pressure and Temperature Sensors Employing Optical Spectrum Modulation," IEEE Trans. Biomed. Eng., 38, 974-981(1991). https://doi.org/10.1109/10.88443
  10. Fernandez-Valdivielso, C., Egozkue, E., Matias, I. R., Arregui, F. J. and Bariain, C., "Experimental Study of a Thermochromic Material Based Optical Fiber Sensor for Monitoring the Temperature of the Water in Several Applications," Sens. Act. B, 91, 231-240(2003). https://doi.org/10.1016/S0925-4005(03)00118-7
  11. Yoo, W. J., Seo, J. K., Jang, K. W., Heo, J. Y., Moon, J. S., Park, J. Y., Park, B. G. and Lee, B. S., "Fabrication and Comparison of Termochromic Material-based Fiber-optics Sensors for Monitoring the Temperature of Water," Optical Review, 18, 144-148(2011). https://doi.org/10.1007/s10043-011-0012-4
  12. Joung, O. J., Kim, Y. H., Maeda, K. and Fukui, K., "Measurement of Hysteresis in Crystallization with a Quartz Crystal Sensor," Korean J. Chem. Eng., 22, 99-102(2005). https://doi.org/10.1007/BF02701469
  13. Chandrasekharan, N. and Kelly, L. A., "A Dual Fluorescence Temperature Sensor Based on Perylene/Exciplex Interconversion," J. Am. Chem. Soc., 123, 9898-9899(2001). https://doi.org/10.1021/ja016153j
  14. Dybko, A., Wroblewski, W., Rozniecka, E., Maciejewski, J. and Brzozka, Z., "Comparison of Two Thermochromics Solutions for Fiber Optics Temperature Probes," Sens. Act., 76, 203-207(1999). https://doi.org/10.1016/S0924-4247(99)00030-8
  15. Bai, H.-X. and Tang, X.-R., "Spectrophotometric Determination of Water Content in Alcohol Organic Solvents," J. Chin. Chem. Soc., 54, 619-624(2007). https://doi.org/10.1002/jccs.200700089
  16. Ferguson, J. and Wood, T. E., "Electronic Absortion Spectra of Tetragonal and Pseudotetragonal Cobalt (II). II. $CoCl_2{\cdot}6D_2O$ and $CoCl_2{\cdot}6H_2O$," Inorgan. Chem., 14, 184-189(1975). https://doi.org/10.1021/ic50143a039
  17. Boltinghouse, F. and Abel, K., "Development of an Optical Relative Humidity Sensor. Cobalt Chloride Optical Absorbency Sensor Study," Anal. Chem., 61, 1863-1866(1989). https://doi.org/10.1021/ac00192a016
  18. The Merck Index, 7th Edition, Merck & Co, Rahway, New Jersey, USA, P. 957(1960).
  19. Savovic, J., Nikolic, R. and Veselinovic, D., "Cobalt (II) chloride Complex Formation in Acetamide-Calcium Nitrate Tetrahydrate Melts," J. Solution Chem., 33, 287-300(2004). https://doi.org/10.1023/B:JOSL.0000035361.89473.a4
  20. Wang, K., Zeng, Y., He, L., Yao, J., Suresh, A. K., Bellare, J., Sridhar, T. and Wang, H., "Evaluation of Quaternary Phosphoniumbased Polymer Membranes for Desalination Application," Desalination, 292, 119-123(2012). https://doi.org/10.1016/j.desal.2012.02.016
  21. Eberhardt, W. H., "Concerning Equilibrium, Free Energy Changes, Le Chatelier's Principle II," J. Chem. Educ., 41, A591(1964).
  22. Lam, D., Branda, N. R., Smit, M. P. and Von Hahn, P. A., "Variable Transmittance Optical Devices," US Patent, US 20130278989 A1.
  23. Francisca, B. and Kenneth, A., "Development of an Optical Relative Humidity Sensor. Cobalt Chloride Optical Absorbency Sensor Study," Anal. Chem., 61, 1863-1866(1989). https://doi.org/10.1021/ac00192a016
  24. Tong, Y. H., Liu, Y. C., Lu, S. X. and Dong, L., "The Optical Properties of ZnO Nanoparticles Capped with Polyvinyl Butyral," J. Sol-Gel Sci. Tech., 30, 157-161(2004). https://doi.org/10.1023/B:JSST.0000039500.48283.5a
  25. Andre, C., Andre, D., Fabrizia, F. B., Phillipp, G., Vadim, K., George, L., Andre, H. and Franze, R., "Pressure- and Temperature-Induced Valence Taumetric Interconversion in a o-Dioxolene Adduct of a Cobalt-Tetraazamacrocycle Complex," Chem. A Eur. J., 7, 3926-3930(2001). https://doi.org/10.1002/1521-3765(20010917)7:18<3926::AID-CHEM3926>3.0.CO;2-6
  26. F. Ann Walker, "Steric and Electronic Effects in the Coordination of Amines to a Cobalt(II) Phorpyrine1a,b," J. Am. chem. Soc., 95, 1150-1153(1973). https://doi.org/10.1021/ja00785a025