DOI QR코드

DOI QR Code

Synthesis, Structure and Physical Properties of A Novel 2D Cd(II) Coordination Polymer Involving 4-Thiopyridine Based on in situ Formation from 4,4'-Dithiodipyridine

  • Chen, Hui-Ru (Department of Chemical Engineering, Changzhou Institute of Engineering Technology)
  • Received : 2014.02.24
  • Accepted : 2014.05.12
  • Published : 2014.09.20

Abstract

Keywords

Experimental

General. All reagents and solvents were commercial available and used without further purification. Infrared spectrum was recorded on a VECTOR 22 spectrometer, over the range 4000–400 cm−1, using KBr pellet. Elemental analysis data (C, H, N) were obtained using a Perkin-Elmer model 240C automatic instrument. The luminescence spectrum was obtained with a Fluoro Max-P spectrophotometer on solid crystalline samples anchored to quartz microscope slides. Thermogravimetric analysis (TGA) was performed under flowing N2 on a Perkin-Elmer Pyris 1 TGA analyzer with a heating rate of 20 ℃ min−1 up to 900 ℃.

Synthesis of [Cd2(odpa)(4-pytH)2·H2O]n (1). A mixture of Cd(NO3)2·6H2O (0.0346 g, 0.100 mmol), H4odpa (0.0346 g, 0.100 mmol) and 4-dtdp (0.0441 g, 0.200 mmol) in H2O (10 mL) was sealed in a 16 mL Teflon-lined stainless steel container and heated at 180 ℃ for 72 h. After cooling to room temperature, colorless block crystals were collected by filtration and washed by water and ethanol several times. (yield 41.2%, based on H4odpa). Elemental analysis for C26H18Cd2N2O10S2 (Mr = 807.38): C 38.68%, N 3.47%, H 2.25%; found: C 38.79%, N 3.48%, H 2.26%. IR (KBr pellets)/cm−1: 3539 (m), 3199 (m), 3119 (m), 2356 (w), 1680 (m), 1577 (s), 1526 (s), 1420 (s), 1379 (s), 1259 (s), 1171 (s), 1142 (m), 987 (s), 855 (s), 722 (s), 476 (w).

Structural Determination and Refinement. Crystallographic diffraction data for complex 1 was recorded on a Siemens (Bruker) SMART CCD diffractometer using monochromated Mo–Kα radiation (λ = 0.71073 Å) at 291 K. Absorption correction was applied using multi-scan technique. The structure was solved by direct method using the program SHELXL–97 and refined by full–matrix least–squares technique on F2 with SHELXL–97.18 All non-hydrogen atoms were located in difference Fourier maps and refined with anisotropic temperature parameters. The H atom of N(pyridine) atom was located in a difference Fourier map. All other H atoms were refined isotropically, with the isotropic vibration parameters related to the non–H atom to which they are bonded. A summary of the structural determination and refinement for the title complex is listed in Table 1 and the selected bond distances and angles are shown in Table 2.

Table 1.

Table 2.Symmetry transformations used to generate equivalent atoms: i −x, y, −z+1/2, ii x, −y, z−1/2, iii −x, −y, −z+1.

References

  1. Milon, J.; Daniel, M. C.; Kaiba, A.; Guionneau, P.; Brandes, S.; Sutter, J. P. J. Am. Chem. Soc. 2007, 129, 13872. https://doi.org/10.1021/ja073612t
  2. Wu, C. D.; Hu, A. G.; Zhang, L.; Lin, W. B. J. Am. Chem. Soc. 2005, 127, 8940. https://doi.org/10.1021/ja052431t
  3. Murray, L. J.; Dinca, M.; Long, J. R. Chem. Soc. Rev. 2009, 38, 1294. https://doi.org/10.1039/b802256a
  4. He, J.; Yu, J.; Zhang, Y.; Pan, Q.; Xu, R. Inorg. Chem. 2005, 44, 9279. https://doi.org/10.1021/ic051143v
  5. Guloy, A. M.; Tang, Z. J.; Miranda, P. B.; Srdanov, V. I. Adv. Mater. 2001, 13, 833. https://doi.org/10.1002/1521-4095(200106)13:11<833::AID-ADMA833>3.0.CO;2-T
  6. Chang, H. Y.; Kim, S. H.; Ok, K. M.; Halasyamani, P. S. Chem. Mater. 2009, 21, 1654. https://doi.org/10.1021/cm9002614
  7. Chen, X. M.; Tong, M. L. Acc. Chem. Res. 2007, 40, 162. https://doi.org/10.1021/ar068084p
  8. (a) Zhang, J.-P.; Lin, Y.-Y.; Huang, X.-C.; Chen, X.-M. J. Am. Chem. Soc. 2005, 127, 5495. https://doi.org/10.1021/ja042222t
  9. (b) Cheng, L.; Zhang, W.-X.; Ye, B.-H.; Lin, J.-B.; Chen, X.-M. Inorg. Chem. 2007, 46, 1135. https://doi.org/10.1021/ic061303i
  10. (c) Li, C.-P.; Zhao, X.-H.; Chen, X.-D.; Yu, Q.; Du, M. Cryst. Growth Des. 2010, 10, 5034. https://doi.org/10.1021/cg100200b
  11. (a) Tong, M.-L.; Li, L.-J.; Mochizuki, K.; Chang, H.-C.; Chen, X.-M.; Li, Y.; Kitagawa, S. Chem. Commun. 2003, 428.
  12. (b) Zheng, Y.-Z.; Tong, M.-L.; Chen, X.-M. New J. Chem. 2004, 28, 1412. https://doi.org/10.1039/b409696g
  13. (c) Nadeem, M. A.; Bhadbhade, M.; Bircher, R.; Stride, J. A. Cryst. Growth Des. 2010, 10, 4060. https://doi.org/10.1021/cg1007389
  14. (a) Hix, G. B.; Kariuki, B. M.; Kitchin, S.; Tremayne, M. Inorg. Chem. 2001, 40, 1477. https://doi.org/10.1021/ic000943x
  15. (b) Zhang, X.-M. Eur. J. Inorg. Chem. 2004, 544.
  16. (c) Zheng, Y.-Z.; Tong, M.-L.; Chen, X.-M. J. Mol. Struct. 2006, 796, 9. https://doi.org/10.1016/j.molstruc.2006.02.032
  17. (a) Lin, W. B.; Wang, Z. Y.; Ma, L. J. Am. Chem. Soc. 1999, 121, 11249. https://doi.org/10.1021/ja9928327
  18. (b) Liu, C. M.; Gao, S.; Kou, H. Z. Chem. Commun. 2001, 1670.
  19. (c) Feng, Y. H.; Han, Z. G.; Peng, J.; Hao, X. R. J. Mol. Struct. 2005, 734, 171. https://doi.org/10.1016/j.molstruc.2004.09.017
  20. Ma, L.-F.; Wang, L.-Y.; Du, M. CrystEngComm. 2009, 11, 2593. https://doi.org/10.1039/b914827m
  21. Rowland, C. E.; Belai, N.; Knope, K. E.; Cahill, C. L. Cryst. Growth Des. 2010, 10, 1390. https://doi.org/10.1021/cg901390n
  22. Rowland, C. E.; Cantos, P. M.; Toby, B. H.; Frisch, M.; Deschamps, J. R.; Cahill, C. L. Cryst. Growth Des. 2011, 11, 1370. https://doi.org/10.1021/cg101619y
  23. Spek, A. L. PLATON, A Multipurpose Crystallographic Tool; Utrecht University: Utrecht, The Netherlands, 1998.
  24. Li, S.-L.; Lan, Y.-Q.; Ma, J.-F.; Fu, Y.-M.; Yang, J.; Ping, G.-J.; Liu, J.; Su, Z.-M. Cryst. Growth Des. 2008, 8, 1610. https://doi.org/10.1021/cg700994p
  25. (a) Allendorf, M. D.; Bauer, C. A.; Bhakta, R. K.; Houk, R. J. T. Chem. Soc. Rev. 2009, 38, 1330. https://doi.org/10.1039/b802352m
  26. (b) Guo, J.; Ma, J.-F.; Liu, B.; Kan, W.-Q.; Yang, J. Cryst. Growth Des. 2011, 11, 3609. https://doi.org/10.1021/cg200581w
  27. (c) Luo, L.; Wang, P.; Xu, G.-C.; Liu, Q.; Chen, K.; Lu, Y.; Zhao, Y.; Sun, W.-Y. Cryst. Growth Des. 2012, 12, 2634. https://doi.org/10.1021/cg300220q
  28. Bruker, SHELXTL, Structure Determination Software Programs; Bruker Analytical X-ray Instruments Inc.: Madison, Wisconsin, USA, 1997.

Cited by

  1. Structural Diversity of Coordination Polymers Based on a Heterotopic Ligand: Cu(II)-Carboxylate vs Cu(I)-Thiolate vol.57, pp.5, 2014, https://doi.org/10.1021/acs.inorgchem.7b03090