DOI QR코드

DOI QR Code

Spin-crossover in Chromium-catalyzed Ethylene Trimerization: Density Functional Theory Study

  • Hossain, Md. Anwar (Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University) ;
  • Kim, Hoon Sik (Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University) ;
  • Houk, K.N. (Department of Chemistry and Biochemistry, University of California) ;
  • Cheong, Minserk (Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University)
  • Received : 2014.03.07
  • Accepted : 2014.05.07
  • Published : 2014.09.20

Abstract

Keywords

References

  1. (a) Skupinska, J. Chem. Rev. 1991, 91, 613. https://doi.org/10.1021/cr00004a007
  2. (b) Ruther, T.; Braussaud, N.; Cavell, K. J. Organometallics 2001, 20, 1247. https://doi.org/10.1021/om000846b
  3. (c) Svejda, S. A.; Brookhart, M. Organometallics 1999, 18, 65. https://doi.org/10.1021/om980736t
  4. (d) Jones, D.; Cavell, K. J.; Keim, W. J. Mol. Catal. A 1999, 138, 37. https://doi.org/10.1016/S1381-1169(98)00144-7
  5. (e) Small, B. L.; Brookhart, M. J. Am. Chem. Soc. 1998, 120, 7143. https://doi.org/10.1021/ja981317q
  6. (f) Killian, C. M.; Johnson, L. K.; Brookhart, M. Organometallics 1997, 16, 2005. https://doi.org/10.1021/om961057q
  7. (g) Peuckert, M.; Keim, W. Organometallics 1983, 2, 594. https://doi.org/10.1021/om00077a004
  8. (a) Manyik, R. M.; Walker, W. E.; Wilson, T. P. Union Carbide Corporation, US Patent 3300458, 1967.
  9. (b) Briggs, J. R. Chem. Commun. 1989, 674.
  10. (c) Emrich, R.; Heinemann, O.; Jolly, P. W.; Krueger, C.; Verhovnik, G. P. J. Organometallics 1997, 16, 1511. https://doi.org/10.1021/om961044c
  11. (d) Manyik, R. M.; Walker, W. E.; Wilson, T. P. J. Catal. 1977, 47, 197. https://doi.org/10.1016/0021-9517(77)90167-1
  12. (e) Yang, Y.; Kim, H.; Lee, J.; Paik, H.; Jang, H. G. Appl. Catal. A 2000, 193, 29. https://doi.org/10.1016/S0926-860X(99)00416-0
  13. (f) Wasserscheid, P.; Grimm, S.; Kohn, R.; Haufe, M. Adv. Synth. Catal. 2001, 343, 814. https://doi.org/10.1002/1615-4169(20011231)343:8<814::AID-ADSC814>3.0.CO;2-H
  14. (g) Carter, A.; Cohen, S. A.; Cooley, N. A.; Murphy, A.; Scutt, J.; Wass, D. F. Chem. Commun. 2002, 858.
  15. (h) Monoi, T.; Sasaki, Y. J. Mol. Catal. A: Chem. 2002, 187, 135. https://doi.org/10.1016/S1381-1169(02)00183-8
  16. (i) McGuinness, D. S.; Wasserscheid, P.; Keim, W.; Hu, C.; Englert, U.; Dixon, J. T.; Grove, C. Chem. Commun. 2003, 334.
  17. (j) McGuinness, D. S.; Wasserscheid, P.; Keim, W.; Morgan, D.; Dixon, J. T.; Bollmann, A.; Maumela, H.; Hess, F.; Englert, U. J. Am. Chem. Soc. 2003, 125, 5272. https://doi.org/10.1021/ja034752f
  18. (k) Morgan, D. H.; Schwikkard, S. L.; Dixon, J. T.; Nair, J. J.; Hunter, R. Adv. Synth. Catal. 2003, 345, 939. https://doi.org/10.1002/adsc.200303070
  19. (l) Commereuc, D.; Drochon, S.; Saussine, L. (Institut Francais du Petrole) US Patent 6031145, 2000.
  20. (m) Wu, F.-J. (Amoco Corp.) US Patent 5811618, 1998.
  21. (n) Aoyama, T.; Mimura, H.; Yamamoto, T.; Oguri, M.; Koie, Y. (Tosoh Corp.) JP Patent 09176229, 1997.
  22. (o) Jolly, P. W. Acc. Chem. Res. 1996, 29, 544. https://doi.org/10.1021/ar9502588
  23. (a) Deckers, P. J. W.; Hessen, B.; Teuben, J. H. Angew. Chem., Int. Ed. 2001, 40, 2516. https://doi.org/10.1002/1521-3773(20010702)40:13<2516::AID-ANIE2516>3.0.CO;2-V
  24. (b) Deckers, P. J. W.; Hessen, B.; Teuben, J. H. Organometallics 2002, 21, 5122. https://doi.org/10.1021/om020765a
  25. (c) Pellechia, C.; Pappalardo, D.; Oliva, L.; Mazzeo, M.; Gruter, G.-J. Macromolecules 2000, 33, 2807. https://doi.org/10.1021/ma991717d
  26. Andes, C.; Harkins, S. B.; Murtuza, S.; Oyler, K.; Sen, A. J. Am. Chem. Soc. 2001, 123, 7423. https://doi.org/10.1021/ja010762+
  27. Santi, R.; Romano, A. M.; Grande, M.; Sommazzi, A.; Masi, F.; Proto, A. (ENICHEM S.P.A.) WO 0168572, 2001.
  28. (a) McDermott, J. X.; White, J. F.; Whitesides, G. M. J. Am. Chem. Soc. 1976, 98, 6521. https://doi.org/10.1021/ja00437a018
  29. (b) Kohn, R. D.; Haufe, M.; Kociok-Kohn, G.; Grimm, S.; Wasserscheid, P.; Keim, W. Angew. Chem. Int. Ed. 2000, 39, 4337. https://doi.org/10.1002/1521-3773(20001201)39:23<4337::AID-ANIE4337>3.0.CO;2-4
  30. (c) Yu, Z.; Houk, K. N. Angew. Chem. Int. Ed. 2003, 42, 808. https://doi.org/10.1002/anie.200390215
  31. (d) McGuinness, D. S.; Wasserscheid, P.; Morgan, D. H.; Dixon, J. T. Organometallics 2005, 24, 552. https://doi.org/10.1021/om049168+
  32. (e) Bluhm, M. E.; Walter, O.; Doring, M. J. Organomet. Chem. 2005, 690, 713. https://doi.org/10.1016/j.jorganchem.2004.09.080
  33. (f) Agapie, T.; Labinger, J. A.; Brecaw, J. E. J. Am. Chem. Soc. 2007, 129, 14281. https://doi.org/10.1021/ja073493h
  34. (g) McGuinness, D. S.; Suttil, J. A.; Gardiner, M. G.; Davies, N. W. Organometallics 2008, 27, 4238. https://doi.org/10.1021/om800398e
  35. (h) Zhang, J.; Braunstein, P.; Hor, T. S. A. Organometallics 2008, 27, 4277. https://doi.org/10.1021/om8005239
  36. (i) Peitz, S.; Peulecke, N.; Aluri, B. R.; Hansen, S.; Muller, B. H.; Spannenberg, A.; Rosenthal, U.; Al-Hazmi, M. H.; Mosa, F. M.; Wohl, A.; Muller, W. Eur. J. Inorg. Chem. 2010, 1167.
  37. (j) Hey, T. W.; Wass, D. F. Organometallics 2010, 29, 3676. https://doi.org/10.1021/om100576u
  38. (k) Kohn, R. D.; Haufe, M.; Mihan, S.; Lilge, D. Chem. Commun. 2000, 1927.
  39. (l) Bowen, L. E.; Haddow, M. F.; Orpen, A. G.; Wass, D. Dalton Trans. 2007, 1160.
  40. (m) Rucklidge, A. J.; McGuinness, D. S.; Tooze, R. P.; Slawin, A. M. Z.; Pelletier, J. D. A.; Hanton, M. J.; Webb, P. B. Organometallics 2007, 26, 2782. https://doi.org/10.1021/om0701975
  41. (n) Jabri, A.; Mason, C. B.; Sim, Y.; Gambarotta, S.; Burchell, T. J.; Duchateau, R. Angew. Chem. Int. Ed. 2008, 47, 9717. https://doi.org/10.1002/anie.200803434
  42. (o) Dulai, A.; de Bod, H.; Hanton, M. J.; Smith, D. M.; Downing, S.; Mansell, S. M.; Wass, D. F. Organometallics 2009, 28, 4613. https://doi.org/10.1021/om900285e
  43. (p) Licciulli, S.; Albahily, K.; Fomitcheva, V.; Korobkov, I.; Gambarotta, S.; Duchateau, R. Angew. Chem. Int. Ed. 2011, 50, 2346. https://doi.org/10.1002/anie.201006953
  44. (q) Skobelev, I. Y.; Panchenko, V. N.; Lyakin, O. Y.; Bryliakov, K. P. V.; Zakharov, A.; Talsi, E. P. Organometallics 2010, 29, 2943. https://doi.org/10.1021/om100215t
  45. (r) Budzelaar, P. H. M. Can. J. Chem. 2009, 87, 832.
  46. (s) Albahily, K.; Shaikh, Y.; Sebastiao, E.; Gambarotta, S.; Korobkov, I.; Gorelsky, S. I. J. Am. Chem. Soc. 2011, 133, 6388. https://doi.org/10.1021/ja201003j
  47. (a) Cacelli, I.; Keogh, D. W.; Poli, R.; Rizzo, A. New J. Chem. 1997, 21, 133.
  48. (b) Cacelli, I.; Keogh, D. W.; Poli, R.; Rizzo, A. J. Phys. Chem. A 1997, 101, 9801. https://doi.org/10.1021/jp972920i
  49. Blom, B.; Klatt, G.; Fletcher, J. C. Q.; Moss, J. R. Inorg. Chim. Acta 2007, 360, 2890. https://doi.org/10.1016/j.ica.2007.02.042
  50. Frisch, M. J. et al. Gaussian 03, Revision C.02, Gaussian Inc.: Wallingford, CT, USA, 2004.
  51. (a) Fukui, K. J. Phys. Chem. 1970, 74, 4161. https://doi.org/10.1021/j100717a029
  52. (b) Fukui, K. Acc. Chem. Res. 1981, 14, 363. https://doi.org/10.1021/ar00072a001

Cited by

  1. Computational Transition-State Design Provides Experimentally Verified Cr(P,N) Catalysts for Control of Ethylene Trimerization and Tetramerization vol.8, pp.2, 2014, https://doi.org/10.1021/acscatal.7b04026
  2. Why Less Coordination Provides Higher Reactivity Chromium Phosphinoamidine Ethylene Trimerization Catalysts vol.10, pp.None, 2014, https://doi.org/10.1021/acscatal.0c02595
  3. Quantum-mechanical transition-state model combined with machine learning provides catalyst design features for selective Cr olefin oligomerization vol.11, pp.35, 2014, https://doi.org/10.1039/d0sc03552a