DOI QR코드

DOI QR Code

Fast Switching of Vertically Aligned Liquid Crystals by Low-Temperature Curing of the Polymer Structure

  • Park, Byung Wok (Department of Electronics Engineering, Pusan National University) ;
  • Oh, Seung-Won (Department of Electronics Engineering, Pusan National University) ;
  • Kim, Jung-Wook (Department of Electronics Engineering, Pusan National University) ;
  • Yoon, Tae-Hoon (Department of Electronics Engineering, Pusan National University)
  • 투고 : 2014.06.13
  • 심사 : 2014.08.01
  • 발행 : 2014.08.25

초록

We proposed a method for fast turn-off switching of a vertically-aligned liquid crystal cell by low-temperature curing of the polymer structure. We confirmed that the turn-off times of the fabricated cells were reduced significantly as the curing temperature was lowered to $-20^{\circ}C$. We accounted for the effect of low-temperature curing on the turn-off time by using a mathematical model and by observing images obtained via scanning electron microscopy. We also confirmed that low-temperature curing is more effective in reducing the response time when the device is operated at a low temperature.

키워드

참고문헌

  1. S. Nagata, E. Takeda, Y. Nanno, T. Kawaguchi, Y. Mino, A. Otsuka, and S. Ishihara, "Capacitively coupled driving of TFT-LCD," in Proc. SID International Symposium (Baltimore Convention Center, USA, May 1989), pp. 242-245.
  2. P. Bos, "Fast-switching liquid-crystal effects for displays," Inf. Disp. 23, 20-25 (2007).
  3. S.-M. Jung, J.-U. Park, S.-C. Lee, W.-S. Kim, M.-S. Yang, I.-B. Kang, and I.-J. Chung, "A novel polarizer glassestype 3D displays with an active retarder," in Proc. SID International Symposium (Henry B. Gonzalez Convention Center, USA, June 2009), pp. 348-351.
  4. H. K. Shin, J. H. Lee, J.-W. Kim, T.-H. Yoon, and J. C. Kim, "Fast polarization switching panel with high brightness and contrast ratio for three-dimensional display," Appl. Phys. Lett. 98, 063505 (2011). https://doi.org/10.1063/1.3548863
  5. L. Rao, S. Gauza, and S.-T. Wu, "Low temperature effects on the response time of liquid crystal displays," Appl. Phys. Lett. 94, 071112 (2009). https://doi.org/10.1063/1.3086883
  6. M. F. Schiekel and K. Fahrenschon, "Deformation of nematic liquid crystals with vertical orientation in electrical fields," Appl. Phys. Lett. 19, 391-393 (1971). https://doi.org/10.1063/1.1653743
  7. C. Z. van Doorn, "Dynamic behavior of twisted nematic liquid crystal layers in switched fields," J. Appl. Phys. 46, 3738-3745 (1975). https://doi.org/10.1063/1.322177
  8. M. Oh-e and K. Kondo, "Electro-optical characteristics and switching behavior of the in-plane switching mode," Appl. Phys. Lett. 67, 3895-3897 (1995). https://doi.org/10.1063/1.115309
  9. K.-H. Kim, E.-Y. Jeon, B. W. Park, S.-W. Choi, D. H. Song, H. Kim, K.-C. Shin, H. S. Kim, and T.-H. Yoon, "High-transmittance multi-domain vertical alignment liquid crystal device with protrusion structure," J. Opt. Soc. Korea 16, 166-169 (2012). https://doi.org/10.3807/JOSK.2012.16.2.166
  10. J.-W. Kim, T.-H. Choi, and T.-H. Yoon, "Design of an electrode structure for the elimination of the off-axis gamma shift in a multi-domain vertical alignment liquid crystal cell," J. Inf. Disp. 15, 19-23 (2014). https://doi.org/10.1080/15980316.2013.875954
  11. J.-K. Song, K.-E. Lee, H.-S. Chang, S.-M. Hong, M.-B. Jun, B.-Y. Park, S.-S. Seomun, K.-H. Kim, and S.-S. Kim, "DCCII: Novel method for fast response time in PVA mode," in Proc. SID International Symposium (Washington State Convention and Trade Center, USA, May 2004), pp. 1344-1347.
  12. P. J. M. Vanbrabant, N. Dessaud, and J. F. Stromer, "Temperature influence on the dynamics of vertically aligned liquid crystal displays," Appl. Phys. Lett. 92, 091101 (2008). https://doi.org/10.1063/1.2889448
  13. C. Y. Xiang, J. X. Guo, X. W. Sun, X. J. Yin, and G. J. Qi, "A fast response, three-electrode liquid crystal device," Jpn. J. Appl. Phys. 42, L763-L765 (2003). https://doi.org/10.1143/JJAP.42.L763
  14. C. Y. Xiang, X. W. Sun, and X. Y. Yin, "The electrooptic properties of a vertically aligned fast response liquid crystal display with three-electrode driving," J. Phys. D: Appl. Phys. 37, 994-997 (2004). https://doi.org/10.1088/0022-3727/37/7/006
  15. J. L. West, G. Zhang, A. Glushchenko, and Y. Reznikov, "Fast birefringent mode stressed liquid crystal," Appl. Phys. Lett. 86, 031111 (2005). https://doi.org/10.1063/1.1852720
  16. J. S. Gwag, J. C. Kim, and T.-H. Yoon, "Electrically tilted liquid crystal display mode for high speed operation," Jpn. J. Appl. Phys. 45, 7047-7049 (2006). https://doi.org/10.1143/JJAP.45.7047
  17. C. Y. Huang, R. X. Fung, Y. G. Lin, and C. T. Hsieh, "Fast switching of polymer-stabilized liquid crystal pi cells," Appl. Phys. Lett. 90, 171918 (2007). https://doi.org/10.1063/1.2733599
  18. J. I. Baek, K.-H. Kim, J. C. Kim, T.-H. Yoon, H. S. Woo, S. T. Shin, and J. H. Souk, "Fast switching of vertical alignment liquid crystal cells with liquid crystalline polymer networks," Jpn. J. Appl. Phys. 48, 056507 (2009). https://doi.org/10.1143/JJAP.48.056507
  19. J.-I. Baek, K.-H. Kim, J. C. Kim, T.-H. Yoon, H. S. Woo, S. T. Shin, and J. H. Souk, "Fast in-plane switching of a liquid crystal cell triggered by a vertical electric field," Jpn. J. Appl. Phys. 48, 104505 (2009). https://doi.org/10.1143/JJAP.48.104505
  20. D. H. Song, J.-W. Kim, K.-H. Kim, S. J. Rho, H. Lee, H. Kim, and T.-H. Yoon, "Ultrafast switching of randomlyaligned nematic liquid crystals," Opt. Express 20, 11659- 11664 (2012). https://doi.org/10.1364/OE.20.011659
  21. B.-H. Yu, D. H. Song, K. H. Kim, B. W. Park, S.-W. Choi, S. I. Park, S. G. Kang, J. H. Yoon, B. K. Kim, and T.-H. Yoon, "Formation of polymer networks for fast in-plane switching of liquid crystals at low temperatures," Jpn. J. Appl. Phys. 52, 094102 (2013). https://doi.org/10.7567/JJAP.52.094102
  22. B. W. Park, J.-W. Kim, S.-W. Oh, J.-W. Huh, and T.-H. Yoon, "Fast switching of a vertically-aligned liquid crystal cell by forming polymer networks at a low temperature," in Proc. SID International Symposium (San Diego Convention Center, USA, June 2014), pp. 1473-1475.
  23. S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G.-D. Lee, J.-J. Lyu, and K. H. Kim, "Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen," Appl. Phys. Lett. 90, 261910 (2007). https://doi.org/10.1063/1.2752105
  24. Y.-J. Lee, Y.-K. Kim, S. I. Jo, J. S. Gwag, C.-J. Yu, and J.-H. Kim, "Surface-controlled patterned vertical alignment mode with reactive mesogen," Opt. Express 17, 10298- 10303 (2009). https://doi.org/10.1364/OE.17.010298
  25. F. Du and S.-T. Wu, "Curing temperature effects on liquid crystal gels," Appl. Phys. Lett. 83, 1310-1312 (2003). https://doi.org/10.1063/1.1602152
  26. D.-K. Yang, Y. Cui, H. Nemati, X. Zhou, and A. Moheghi, "Modeling aligning effect of polymer network in polymer stabilized nematic liquid crystals," J. Appl. Phys. 114, 243515 (2013). https://doi.org/10.1063/1.4856295

피인용 문헌

  1. A liquid crystal cell with double-side protrusion electrodes for fast response and low-voltage operation 2015, https://doi.org/10.1080/02678292.2015.1116631
  2. Superfast Low-Temperature Switching of Nematic Liquid Crystals Using Quasi-Impulsive Driving and Overdrive vol.12, pp.1, 2016, https://doi.org/10.1109/JDT.2015.2446513
  3. Fast response time in liquid crystal cells doped with low concentrations of reactive mesogen via photopolymerization at low temperature vol.7, pp.8, 2017, https://doi.org/10.1364/OME.7.002740