DOI QR코드

DOI QR Code

Three-Dimensional Analysis of the Collapse of a Fatty Acid at Various Compression Rates using In Situ Imaging Ellipsometry

  • Hwang, Soon Yong (Nano-Optical Property Laboratory and Department of Physics, Kyung Hee University) ;
  • Kim, Tae Jung (Nano-Optical Property Laboratory and Department of Physics, Kyung Hee University) ;
  • Byun, Jun Seok (Nano-Optical Property Laboratory and Department of Physics, Kyung Hee University) ;
  • Park, Han Gyeol (Nano-Optical Property Laboratory and Department of Physics, Kyung Hee University) ;
  • Choi, Junho (Nano-Optical Property Laboratory and Department of Physics, Kyung Hee University) ;
  • Kang, Yu Ri (Nano-Optical Property Laboratory and Department of Physics, Kyung Hee University) ;
  • Park, Jae Chan (Nano-Optical Property Laboratory and Department of Physics, Kyung Hee University) ;
  • Kim, Young Dong (Nano-Optical Property Laboratory and Department of Physics, Kyung Hee University)
  • 투고 : 2014.06.24
  • 심사 : 2014.08.01
  • 발행 : 2014.08.25

초록

The collapse of Langmuir monolayers of arachidic acid (AA) on water at various rates of molecular area compression has been investigated in situ by imaging ellipsometry (IE). The thickness of the collapsed AA molecules, which are inherently inhomogeneous, was determined by IE with a spatial resolution of a few microns. For the analysis, we determined the dielectric function of AA monolayers from 380 to 1690 nm by conventional spectroscopic ellipsometry. Compression rates ranged from 0.23 to $0.94{\AA}^2/min$. A change of multilayer domains was observed in the in situ IE images. Lower compression rates resulted in more uniform collapsed films. Our experimental results correspond with previous theoretical simulations.

키워드

참고문헌

  1. H. M. McConnell, "Structures and transitions in lipid monolayers at the air-water interface," Annu. Rev. Phys. Chem. 42, 171-195 (1991). https://doi.org/10.1146/annurev.pc.42.100191.001131
  2. C. M. Knobler and R. Desai, "Phase transitions in monolayers," Annu. Rev. Phys. Chem. 43, 207-236 (1992). https://doi.org/10.1146/annurev.pc.43.100192.001231
  3. H. Mohwald, "Surfactant layers at water surfaces," Rep. Prog. Phys. 56, 653-685 (1993). https://doi.org/10.1088/0034-4885/56/5/002
  4. W. Sung, D. Vaknin, and D. Kim, "Different adsorption behavior of rare earth and metallic ion complexes on Langmuir monolayers probed by sum-frequency generation spectroscopy," J. Opt. Soc. Korea ,17, 10-15 (2013). https://doi.org/10.3807/JOSK.2013.17.1.010
  5. D. Vollhardt, "Nucleation in monolayers," Adv. Colloid Interface Sci. 123, 173-188 (2006).
  6. B. J. Glasgow, G. Marshall, O. K. Gasymov, A. R. Abduragimov, T. N. Yusifov, and C. M. Knobler, "Tear lipocalins: Potential lipid scavengers for the corneal surface," Investig. Ophthalmol. Vis. Sci. 40, 3100-3107 (1999).
  7. J. V. Greiner, T. Glonek, D. R. Korb, R. Booth, and C. D. Leahy, "Phospholipids in Meibomian gland secretion," Ophthalmol. Res. 28, 44-49 (1996).
  8. A. Grace, P. Kwok, and M. Hawke, "Surfactant in middle ear effusions," Otolaryngol. Head Neck Surg. 96, 336-340 (1987). https://doi.org/10.1177/019459988709600406
  9. B. A. Hills, "Hydrophobic lining of the Eustachian tube imparted by surfactant,Arch. Otolaryngol. 110, 779-782 (1984). https://doi.org/10.1001/archotol.1984.00800380009003
  10. R. Veldhuizen, K. Nag, S. Orgeig, and F. Possmayer, "The role of lipids in pulmonary surfactant," Biochim. Biophys. Acta 1408, 90-108 (1998). https://doi.org/10.1016/S0925-4439(98)00061-1
  11. S.-H. Yu and F. Possmayer, "Lipid compositional analysis of pulmonary surfactant monolayers and monolayer-associated reservoirs," J. Lipid Res. 44, 621-629 (2003). https://doi.org/10.1194/jlr.M200380-JLR200
  12. J. Goerke, "Lung surfactant," Biochim. Biophys. Acta 344, 241-261 (1974). https://doi.org/10.1016/0304-4157(74)90009-4
  13. K. Y. C. Lee, "Collapse mechanisms of Langmuir monolayers," Annu. Rev. Phys. Chem. 59, 771-791 (2008). https://doi.org/10.1146/annurev.physchem.58.032806.104619
  14. C. Ybert, W. Lu, G. Moller, and C. M. Knober, "Collapse of a monolayer by three mechanisms," J. Phys. Chem. B 106, 2004-2008 (2002). https://doi.org/10.1021/jp013173z
  15. W. Lu, C. M. Knobler, and R. F. Bruinsma, "Folding Langmuir monolayers," Phys. Rev. Lett. 89, 146107 (2002). https://doi.org/10.1103/PhysRevLett.89.146107
  16. T. Kato, "What is the characteristic time of measurement of $\pi$ -A isotherms? Necessity of a constant strain rate of compression of insoluble monolayers for $\pi$ -A measurements," Langmuir 6, 870-872 (1990). https://doi.org/10.1021/la00094a027
  17. T. Kato, Y. Hirobe, and M. Kato, "The "time of observation" of $\pi$ -A isotherms. 2. A possibility that so-called "solid films" in $\pi$ -A isotherms of monolayers of longchain acids may not correspond to the two-dimensional solids but to the first-order phase transition regions from two-dimensional liquids to solids," Langmuir 7, 2208-2212 (1991). https://doi.org/10.1021/la00058a039
  18. T. Kato, K. Iriyama, and T. Araki, "The time of observation of $\pi$ -A isotherms III. Studies on the morphology of arachidic acid monolayers, observed by transmission electron microscopy of replica samples of one-layer Langmuir-Blodgett films using plasma-polymerization," Thin Solid Films 210, 79-81 (1992).
  19. A. Angelova, D Vollhardt, and R. J. Ionov, "2D-3D transformations of amphiphilic monolayers influenced by intermolecular interactions: A Brewster angle microscopy study," J. Phys. Chem. 100, 10710-10720 (1996). https://doi.org/10.1021/jp960417k
  20. D. Vaknin, W. Bu, S. K. Satija, and A. Travesset, "Ordering by collapse: Formation of bilayer and trilayer crystals by folding Langmuir monolayers," Langmuir 23, 1888-1897 (2007). https://doi.org/10.1021/la062672u
  21. S. Seok, T. J. Kim, S. Y. Hwang, Y. D. Kim, D. Vaknin, and D. Kim, "Imaging of collapsed fatty acid films at air-water interfaces," Langmuir 25, 9262-9269 (2009). https://doi.org/10.1021/la900096a
  22. Y. M. Bae, B. K. Oh, W. Lee, W. H. Lee, and J. W. Choi, "Immunosensor for detection of Yersinia enterocolitica based on imaging ellipsometry," Anal. Chem. 76, 1799- 1803 (2004). https://doi.org/10.1021/ac034748m
  23. A. J. Choi, T. H. Ghong, Y. D. Kim, J. H. Oh, and J. Jang, "Imaging ellipsometry study on the Ni-mediated crystallization of a-Si," J. Appl. Phys. 100, 113529 (2006). https://doi.org/10.1063/1.2345468
  24. J. Choi, K. Kim, and D. Kim, "In situ fluorescence optical detection using a digital micromirror device (DMD) for 3D cell-based assays," J. Opt. Soc. Korea 16, 42-46 (2012). https://doi.org/10.3807/JOSK.2012.16.1.042
  25. D. Ducharme, A. Tessier, and S. C. Russev, "Simultaneous thickness and refractive index determination of monolayers deposited on an aqueous subphase by null ellipsometry," Langmuir 17, 7529-7534 (2001). https://doi.org/10.1021/la001528k
  26. D. E. Aspnes and A. A. Studna, "High precision scanning Ellipsometer," Appl. Opt. 14, 220-228 (1975). https://doi.org/10.1364/AO.14.000220
  27. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1987), Chapter 4.
  28. F. A. Jenkins and H. E. White, Fundamentals of Optics, 4th ed. (McGraw-Hill, New York, 1976), p. 479.
  29. K. Kjaer, J. Als-Nielsen, C. A. Helm, P. Tippman-Krayer, and H. Mohwald, "Synchrotron x-ray diffraction and reflection studies of arachidic acid monolayers at the airwater interface," J. Phys. Chem. 93, 3200-3206 (1989). https://doi.org/10.1021/j100345a063
  30. M. C. Howland, A. W. Szmodis, B. Sanii, and A. N. Parikh, "Characterization of physical properties of supported phospholipid membranes using imaging ellipsometry at optical wavelengths,"Biophys. J. 92, 1306-1317 (2007). https://doi.org/10.1529/biophysj.106.097071
  31. R. Reiter, H. Motschmann, H. Orendi, A. Nemetz, and W. Knoll, "Ellipsometric microscopy. Imaging monomolecular surfactant layers at the air-water interface," Langmuir 8, 1784-1788 (1992). https://doi.org/10.1021/la00043a017
  32. C. D. Lorenz and A. Travesset, "Atomistic simulations of Langmuir monolayer collapse Langmuir 22, 10016-10024 (2006). https://doi.org/10.1021/la061868r
  33. H. E. Ries Jr. and H. Swift, "Electron microscope and pressure-area studies on a gramicidin and its binary mixtures with cerebronic acid, cholesterol and valinomycin," Colloids Surf. 40, 145-165 (1989). https://doi.org/10.1016/0166-6622(89)80015-0
  34. W. Bu and D. Vaknin, "Bilayer and trilayer crystalline formation by collapsing behenic acid monolayers at gas/ aqueous interfaces," Langmuir 24, 441-447 (2008). https://doi.org/10.1021/la702107e