DOI QR코드

DOI QR Code

A Vapor Sensor Based on a Porous Silicon Microcavity for the Determination of Solvent Solutions

  • 투고 : 2014.05.13
  • 심사 : 2014.07.25
  • 발행 : 2014.08.25

초록

A porous silicon microcavity (PSMC) sensor has been made for vapors of solvent solutions, and a method has been developed in order to obtain simultaneous determination of two volatile substances with different concentrations. In our work, the temperature of the solution and the velocity of the air stream flowing through the solution have been used to control the response of the sensor for ethanol and acetone solutions. We study the dependence of the cavity-resonant wavelength shift on solvent concentration, velocity of the airflow and solution temperature. The wavelength shift depends linearly on concentration and increases with solution temperature and velocity of the airflow. The dependence of the wavelength shift on the solution temperature in the measurement contains properties of the temperature dependence of the solvent vapor pressure, which characterizes each solvent. As a result, the dependence of the wavelength shift on the solution temperature discriminates between solutions of ethanol and acetone with different concentrations. This suggests a possibility for the simultaneous determination of the volatile substances and their concentrations.

키워드

참고문헌

  1. S. C. Bayliss, "The structure of porous silicon from XAFS and ES," in Structural and Optical Properties of Porous Silicon Nanostructures, G. Amato, C. Delerue, and H. J. von Bardeleben, ed. (Gordon and Breach Science Publishers, Indian, 1997), Chapter 12.
  2. J. P. Badilla, D. C. Rojas, V. Lopez, B. D. Fahlman, and A. Ramirez-Porras, "Development of an organic vapor sensor based on functionalized porous silicon," Phys. Stat. Sol. (a) 208, 1458-1461 (2011). https://doi.org/10.1002/pssa.201000036
  3. L. De Stefano, L. Moretti, I. Rendina, and A. M. Rosi, "Porous silicon microcavities for optical hydrocarbons detection," Sens. Actuators A 104, 179-182 (2003). https://doi.org/10.1016/S0924-4247(03)00057-8
  4. V. H. Pham, H. Bui, L. H. Hoang, T. V. Nguyen, T. A. Nguyen, T. S. Pham, and Q. M. Ngo, "Nano-porous silicon microcavity sensors for determination of organic fuel mixtures," J. Opt. Soc. Korea 17, 423-427 (2013). https://doi.org/10.3807/JOSK.2013.17.5.423
  5. L. De Stefano, K. Malecki, F. G. Della Corte, L. Moretti, I. Rea, L. Rotiroti, and I. Rendina, "A microsystem based on porous silicon-glass anodic bonding for gas and liquid optical sensing," Sensors 6, 680-687 (2006). https://doi.org/10.3390/s6060680
  6. H. J. Kim, Y. Y. Kim, K. W. Lee, and S. H. Park, "A distributed Bragg reflector porous silicon layer for optical interferometric sensing of organic vapor," Sens. Actuators B 155, 673-678 (2011). https://doi.org/10.1016/j.snb.2011.01.028
  7. T. Jalkanen, V. Torres-Costa, J. Salonen, M. Bjurkqvist, E. Mokilo, J. M. Martinez-Duart, and V. P. Lehto, "Optical gas sensing properties of thermally hydrocarbonized porous silicon Bragg reflectors," Opt. Express 17, 5446-5456 (2009). https://doi.org/10.1364/OE.17.005446
  8. L. De Stefano, L. Moretti, I. Rendina, and A. M. Rossi, "Quantitative optical sensing in two-component mixtures using porous silicon microcavities," Phys. Stat. Sol. (a) 201, 1011-1016 (2004). https://doi.org/10.1002/pssa.200306780
  9. O. Meskini, A. Abdelghani, A. Tlili, R. Mgaieth, N. Jaffrezic Renault, and C. Martelet, "Porous silicon as functionalized material for immunosensor application," Talanta 71, 1430- 1433 (2007). https://doi.org/10.1016/j.talanta.2006.05.089
  10. M. Hiraoui, M. Guendouz, N. Lorrain, A. Moadhen, L. Haji, and M. Oueslati, "Spectroscopy studies of functionalized oxidized porous silicon surface for biosensing applications," Mater. Chem. Phys. 128, 151-156 (2011). https://doi.org/10.1016/j.matchemphys.2011.02.052
  11. B. H. King, T. Wong, and M. J. Sailor, "Detection of pure chemical vapors in a thermally cycled porous silica photonic crystal," Langmuir 27, 8576-8585 (2011). https://doi.org/10.1021/la201095x
  12. J. S. Ye and Z. Li, "A method for the measurement of methane gas based on multi-beam interferometry," J. Opt. Soc. Korea 17, 481-485 (2013). https://doi.org/10.3807/JOSK.2013.17.6.481
  13. L. Moretti, I. Rea, L. De Stefano, and I. Rendina, "Periodic versus a periodic: Enhancing the sensitivity of porous silicon based optical sensors," Appl. Phys. Lett. 90, 191112 (2007). https://doi.org/10.1063/1.2737391
  14. S. H. Park, Y. Y. Kim, and K. W. Lee, "Sensitivity improvement of free-standing porous silicon rugate filters for isopropanol vapor detection by applying lateral pressure differences," Sens. Actuators B 176, 437-442 (2013). https://doi.org/10.1016/j.snb.2012.09.045
  15. T. C. Do, H. Bui, T. V. Nguyen, T. A. Nguyen, T. H. Nguyen, and V. H. Pham, "A microcavity based on a porous silicon multilayer," Adv. Nat. Sci.: Nanosci. Nanotechnol. 2, 035001 (2011). https://doi.org/10.1088/2043-6262/2/3/035001
  16. J. Chapron, S. A. Alekseev, V. Lysenko, V. N. Zaitsev, and D. Barbier, "Analysis of interaction between chemical agents and porous Si nanostructures using optical sensing properties of infra-red Rugate filters," Sens. Actuators B 120, 706-711 (2007). https://doi.org/10.1016/j.snb.2006.03.038
  17. M. S. Salem, M. J. Sailor, K. Fukami, T. Sakka, and Y. H. Ogata, "Sensitivity of porous silicon rugate for chemical vapor detection," J. Appl. Phys. 103, 083516 (2008). https://doi.org/10.1063/1.2906337
  18. N. A. Lange, Lange's Handbook of Chemistry, J. A. Dean, 15th ed. (Mc Graw-Hill, INC, ISBN 0-07-016384-7, 1999).
  19. T. S. Pham, H. Bui, T. V. Nguyen, Q. M. Ngo, T. A. Nguyen, T. H. C. Hoang, T. C. Do, Q. H. Le, and V. H. Pham, "Liquid sensors based on porous silicon microcavity," Proc. Adv. Opt. Photo. Spec. & Appl. VII, ISSN 1859- 4271, 754-759 (2013).

피인용 문헌

  1. Nano porous silicon microcavity sensor for determination organic solvents and pesticide in water vol.5, pp.4, 2014, https://doi.org/10.1088/2043-6262/5/4/045003
  2. Progress in the research and development of photonic structure devices vol.7, pp.1, 2016, https://doi.org/10.1088/2043-6262/7/1/015003
  3. Determination of low solvent concentration by nano-porous silicon photonic sensors using volatile organic compound method pp.1479-487X, 2019, https://doi.org/10.1080/09593330.2018.1474268
  4. Time-Resolved Spectroscopy of Ethanol Evaporation on Free-Standing Porous Silicon Photonic Microcavities vol.11, pp.6, 2018, https://doi.org/10.3390/ma11060894