DOI QR코드

DOI QR Code

THE LEBESGUE DELTA INTEGRAL

  • Park, Jae Myung (Department of Mathematics Chungnam National University) ;
  • Lee, Deok Ho (Department of Mathematics Education KongJu National University) ;
  • Yoon, Ju Han (Department of Mathematics Education Chungbuk National University) ;
  • Lim, Jong Tae (Department of Mathematics Chungnam National University)
  • Received : 2014.05.22
  • Accepted : 2014.06.30
  • Published : 2014.08.15

Abstract

In this paper, we define the extension $f^*:[a,b]{\rightarrow}\mathbb{R}$ of a function $f:[a,b]_{\mathbb{T}}{\rightarrow}\mathbb{R}$ for a time scale $\mathbb{T}$ and investigate the properties of the Lebesgue delta integral of f on $[a,b]_{\mathbb{T}}$ by using the function $f^*$.

Keywords

References

  1. R. Agarwal and M. Bohner, Basic calculus on time scales and some of its applications, Results Math. 35 (1999), 3-22. https://doi.org/10.1007/BF03322019
  2. S. Avsec, B. Bannish, B. Johnson, and S. Meckler, The Henstock-Kurzweil delta integral on unbounded time scales, PanAmerican Math. J. 16 (2006), no. 3, 77-98.
  3. M. Bohner, and A. Perterson(Eds.), Advance in Dynamic Equations on times scales, Birkhauser Boston, Inc. Bostop, MA, 2003.
  4. A. Cabada and D. R. Vivero, Expression of the Lebesgue $\Delta$-integral on time scales as a usual Lebesgue Integral; application to the calculus of $\Delta$-antiderivatives, Math. Comp. Modell. 43 (2006), 194-207. https://doi.org/10.1016/j.mcm.2005.09.028
  5. G. Sh. Guseinov, Intergration on time scales, J. Math. Anal. Appl. 285 (2003), 107-127. https://doi.org/10.1016/S0022-247X(03)00361-5
  6. G. Sh. Guseinov and B. Kaymakcalan, Basics of Riemann delta and nabla integration on time scales, J. Difference Equations Appl. 8 (2002), 1001-1027. https://doi.org/10.1080/10236190290015272
  7. J. M. Park, D. H. Lee, J. H. Yoon, and J. T. Lim, The Henstock and Henstock delta Integrals, J. Chungcheong Math. Soc. 26 (2013), no. 2, 291-298.
  8. J. M. Park, D. H. Lee, J. H. Yoon, Y. K. Kim, and J. T. Lim, The relation between Henstock integral and Henstock delta Integral on time scales, J. Chungcheong Math. Soc. 26 (2013), no. 3, 625-630. https://doi.org/10.14403/jcms.2013.26.3.625
  9. J. M. Park, D. H. Lee, J. H. Yoon, and J. T. Lim, The relation between McShane integral and McShane delta Integral, J. Chungcheong Math. Soc. 27 (2014), no. 1, 113-121. https://doi.org/10.14403/jcms.2014.27.1.113
  10. J. M. Park, D. H. Lee, J. H. Yoon, Y. K. Kim, and J. T. Lim, The Riemann Delta Integral on time scales, J. Chungcheong Math. Soc.(to appear). https://doi.org/10.14403/jcms.2014.27.2.327
  11. A. Perterson and B. Thompson, Henstock-Kurzweil Delta and Nabla Integral, J. Math. Anal. Appl. 323 (2006), 162-178. https://doi.org/10.1016/j.jmaa.2005.10.025
  12. C. W. Swartz and D. S. Kurtz, Theories of Integration: The Integrals of Rie-mann Lebesgue, Henstock-Kurzweil, and Mcshane, World Scientific, 2004.
  13. B. S. Thomson, Henstock-Kurzweil integtals on time scales, Pan American Math J. 18 (2008), no. 1, 1-19.