DOI QR코드

DOI QR Code

ON POSITIVE IMPLICATIVE FILTERS IN BE-ALGEBRAS

  • Kim, Young Hee (Department of Mathematics Chungbuk National University) ;
  • Park, Jung Hee (Department of Mathematics Chungbuk National University)
  • Received : 2014.04.17
  • Accepted : 2014.07.10
  • Published : 2014.08.15

Abstract

In this paper, we introduce the notion of a positive implicative filter in BE-algebras. We show that every positive implicative filter is a filter in BE-algebras. We give some examples that a filter may not be a positive implicative filter and also a positive implicative filter may be not an implicative filter in BE-algebras. We also give some equivalent conditions of a positive implicative filter in BE-algebras.

Keywords

References

  1. S. S. Ahn, Y. H. Kim, and J. M. Ko, Filters in commutative BE-algebras, Commun. Korea Math. Soc. 27 (2012), 233-242. https://doi.org/10.4134/CKMS.2012.27.2.233
  2. S. S. Ahn and K. K. So, On ideals and upper sets in BE-algebras, Sci. Math. Jpn. 68 (2008), 279-285.
  3. S. S. Ahn and K. K. So, On generalized upper sets in BE-algebras, Bull. Korean Math. Soc. 46 (2009), 281-287. https://doi.org/10.4134/BKMS.2009.46.2.281
  4. Q. P. Hu and X. Li, On BCH-algebras, Math. Seminar Notes 11 (1983), 313-320.
  5. Q. P. Hu and X. Li, On proper BCH-algebras, Sci. Math. Jpn. 30 (1985), 659-661.
  6. K. Iseki and S. Tanaka, An introduction to theory of BCK-algebras, Math. Japonica 23 (1978), 1-26.
  7. K. Iseki, On BCI-algebras, Math. Seminar Notes 8 (1980), 125-130.
  8. C. B. Kim and H. S. Kim, On BM-algebras, Sci. Math. Jpn. 63 (2006), no. 3, 421-427.
  9. H. S. Kim and Y. H. Kim, On BE-algebras, Sci. Math. Jpn. 66 (2007), 113-116.
  10. H. S. Kim, Y. H. Kim, and J. Neggers, Coxeters and pre-Coxeter algebras in Smarandache setting, Honam Math. J. 26 (2004), no. 4, 471-481.
  11. Y. B. Jun, E. H. Roh, and H. S. Kim, On BH-algebras, Sci. Math. Japon. 1 (1998), 347-354.
  12. J. Meng and Y. B. Jun, BCK-algebras, Kyung Moon Sa, Seoul, 1994.
  13. J. Neggers and H. S. Kim, On d-algebras, Math. Slovaca 49 (1999), 19-26.
  14. J. Neggers and H. S. Kim, On B-algebras, Mate. Vesnik 54 (2002), 21-29.
  15. J. Neggers and H. S. Kim, A fundamental theorem of B-homomorphism for B-algebras, Int. Math. J. 2 (2002), 215-219.
  16. A. Walendziak, Some axiomatizations of B-algebras, Math. Slovaca 56 (2006), no. 3, 301-306.

Cited by

  1. INT-SOFT MIGHTY FILTERS IN BE-ALGEBRAS vol.34, pp.5_6, 2016, https://doi.org/10.14317/jami.2016.527