참고문헌
- M. Adimy, H. Bouzahir, and K. Ezzinbi, Existence for a class of partial functional differential equations with infinite delay, Nonlinear Analysis Theory, Methods and Applications 46 (2001), 91-112. https://doi.org/10.1016/S0362-546X(99)00447-2
- M. Adimy, H. Bouzahir, and K. Ezzinbi, Local existence and stability for some partial functional differential equations with infinite delay, Nonlinear Analysis Theory, Methods and Applications 48 (2002), 323-348. https://doi.org/10.1016/S0362-546X(00)00184-X
-
M. Adimy and K. Ezzinbi, Existence and stability in the
$\alpha$ -norm for some partial functional differential equations of neutral type, Annali di Matematica 185 (2006), no. 3, 437-460. https://doi.org/10.1007/s10231-005-0162-8 - K. Balachandran and J. Y. Park, Existence of a mild solution of a functional integrodifferential equation with nonlocal condition, Bull. Korean Math. Soc. 38 (2001), 175-182.
- K. Balachandran and M. Chandrasekaran, Existence of solution of a delay differential equation with nonlocal condition, Indian J. Pure Appl. Math. 27 (1996), 443-449.
- K. Balachandran and M. Chandrasekaran, Existence of solutions of nonlin-ear integrodifferential equation with nonlocal conditions, Indian J. Appl.Stoch. Anal. 10 (1997), 27-288.
-
R. Benkhalti and K. Ezzinbi, Existence and stability in the
$\alpha$ -norm for some partial functional differential equations with infinite delay, Differential and In-tegral Equations 19 (2006), 545-572. - R. Benkhalti and K. Ezzinbi, Existence and stability for some partial neutral functional differential equations, Differential and Integral Equations 17 (2004), 1426-1436.
- R. Benkhalti, H. Bourzahir, and K. Ezzinbi, Existence of a periodic solution for some partial functional differential equations with infinite delay, Journal of Mathematical Analysis and Applications 256 (2001), 257-280. https://doi.org/10.1006/jmaa.2000.7321
- H. Bouzahir and K. Ezzinbi, Global Attractor for a class of partial functional differential equations with infinite delay, Fields Institute Communications 29 (2001), 63-71.
- L. Byszewski, Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem, J. Math. Anal. Appl. 162 (1991), 494-505. https://doi.org/10.1016/0022-247X(91)90164-U
- L. Byszewski, Existence, uniqueness and asymptotic stability of solutions of abstract nonlocal Cauchy problem, Dynamic Systems and Applications 5 (1996), 595-605.
- L. Byszewski and H. Acka, On a mild solution of a semilinear functional-differential evolution nonlocal problem, J. Appl. Math. Stoch. Anal. 10 (1997), 265-271. https://doi.org/10.1155/S1048953397000336
- K. Ezzinbi, Existence and stability for some partial functional differential equations with infinite delay, Electronic Journal of Differential Equations 2003 (2003), 1-13.
- J. K. Hale, Asymptotic Behavior of Dissipative Systems, Amer. Math. Soc., Providence, RI, 1988.
- J. K. Hale and J. Kato, Phase space for retarded equations with unbounded delay, Funkcial Ekvac 21 (1978), 11-41.
- J. K. Hale and S. Lunel, Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993.
- Y. Lin and J. H. Liu, Semilinear integrodifferential equations with nonlocal Cauchy problem, NonLinear Analysis, Methods and Appl. 26 (1996), 1023-1033. https://doi.org/10.1016/0362-546X(94)00141-0
- A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences 44 Springer-Verlag, New York, 1983
-
C. C. Tarvis and G. F. Web, Existence, stability and compactness in the
$\alpha$ -norm for partial functional differential equations, Transactions of the American Mathematical Society 240 (1978), 129-143.
피인용 문헌
- EXITSENCE OF MILD SOLUTIONS FOR SEMILINEAR MIXED VOLTERRA-FREDHOLM FUNCTIONAL INTEGRODIFFERENTIAL EQUATIONS WITH NONLOCALS vol.28, pp.3, 2015, https://doi.org/10.14403/jcms.2015.28.3.365