DOI QR코드

DOI QR Code

Genetic Diversity and Relationships of Korean Chicken Breeds Based on 30 Microsatellite Markers

  • Suh, Sangwon (Animal Genetic Resources Station, National Institute of Animal Science, RDA) ;
  • Sharma, Aditi (Hanwoo Experiment Station) ;
  • Lee, Seunghwan (Hanwoo Experiment Station) ;
  • Cho, Chang-Yeon (Animal Genetic Resources Station, National Institute of Animal Science, RDA) ;
  • Kim, Jae-Hwan (Animal Genetic Resources Station, National Institute of Animal Science, RDA) ;
  • Choi, Seong-Bok (Animal Genetic Resources Station, National Institute of Animal Science, RDA) ;
  • Kim, Hyun (Animal Genetic Resources Station, National Institute of Animal Science, RDA) ;
  • Seong, Hwan-Hoo (Animal Genetic Resources Station, National Institute of Animal Science, RDA) ;
  • Yeon, Seong-Hum (Hanwoo Experiment Station) ;
  • Kim, Dong-Hun (Animal Genetic Resources Station, National Institute of Animal Science, RDA) ;
  • Ko, Yeoung-Gyu (Hanwoo Experiment Station)
  • Received : 2014.01.06
  • Accepted : 2014.06.03
  • Published : 2014.10.01

Abstract

The effective management of endangered animal genetic resources is one of the most important concerns of modern breeding. Evaluation of genetic diversity and relationship of local breeds is an important factor towards the identification of unique and valuable genetic resources. This study aimed to analyze the genetic diversity and population structure of six Korean native chicken breeds (n = 300), which were compared with three imported breeds in Korea (n = 150). For the analysis of genetic diversity, 30 microsatellite markers from FAO/ISAG recommended diversity panel or previously reported microsatellite markers were used. The number of alleles ranged from 2 to 15 per locus, with a mean of 8.13. The average observed heterozygosity within native breeds varied between 0.46 and 0.59. The overall heterozygote deficiency ($F_{IT}$) in native chicken was $0.234{\pm}0.025$. Over 30.7% of $F_{IT}$ was contributed by within-population deficiency ($F_{IS}$). Bayesian clustering analysis, using the STRUCTURE software suggested 9 clusters. This study may provide the background for future studies to identify the genetic uniqueness of the Korean native chicken breeds.

Keywords

References

  1. Chen, G., W. Bao, J. Shu, C. Ji, M. Wang, H. Eding, F. Muchadeyi, and S. Weigend. 2008. Assessment of population structure and genetic diversity of 15 Chinese indigenous chicken breeds using microsatellite markers. Asian Australas. J. Anim. Sci. 21:331-339. https://doi.org/10.5713/ajas.2008.70125
  2. Crooijmans, R. P. M. A., J. V. D. Poel, and M. A. M. Groenen. 1995. Functional genes mapped on the chicken genome. Anim. Gent. 26:73-78.
  3. Dunnington, E. A., L. C. Stallard, J. Hillel, and P. B. Siegel. 1994. Genetic diversity among commercial chicken populations estimated from DNA fingerprints. Poult. Sci. 73:1218-1225. https://doi.org/10.3382/ps.0731218
  4. Earl, D. A. and B. M. von-Holdt. 2012. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4:359-361. https://doi.org/10.1007/s12686-011-9548-7
  5. Evanno, G., S. Regnaut, and J. Goudet. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14:2611-2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x
  6. FAO/MoDAD. 2004. Secondary Guidelines. Measurement of Domestic Animal Diversity (MoDAD): Recommended Microsatellite Markers. Available at http://fao.org/dad-is
  7. Goudet, J. 2001. FSTAT, a program to estimate and test gene diversities and fixation indices (ver. 2.9.3.) Lausanne (Switzerland). Institute of Ecology. Available at http://www2.unil.ch/popgen/softwares/fstat.html
  8. Hillel, J., M. A. Groenen, M. Tixier-Boichard, A. B. Korol, L. David, V. M. Kirzhner, T. Burke, A. Barre-Dirie, R. P. M. A. Crooijmans, K. Elo, M. W. Feldman, P. J. Freidlin, A. Maki-Tanila, M. Oortwijn, P. Thomoson, A. Vignal, K. Wimmers, and S. Weigend. 2003. Biodiversity of 52 chicken populations assessed by microsatellite typing of DNA pools. Genet. Sel. Evol. 35:533-557. https://doi.org/10.1186/1297-9686-35-6-533
  9. Jakobsson, M. and N. A. Rosenberg. 2007. CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801-1806. https://doi.org/10.1093/bioinformatics/btm233
  10. Kalinowski, S. T., M. L. Taper, and T. C. Marshall. 2007. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 16:1099-1106. https://doi.org/10.1111/j.1365-294X.2007.03089.x
  11. Kaya, M. and M. A. Yıldız. 2008. Genetic diversity among Turkish native chickens, Denizli and Gerze, estimated by microsatellite markers. Biochem. Genet. 46:480-491. https://doi.org/10.1007/s10528-008-9164-8
  12. Kong, H. S., J. D. Oh, J. H. Lee, K. J. Jo, B. D. Sang, C. H. Choi, S. D. Kim, S. J. Lee, S. H. Yeon, G. J. Jeon, and H. K. Lee. 2006. Genetic variation and relationships of Korean native chickens and foreign breeds using 15 microsatellite markers. Asian Australas. J. Anim. Sci. 19:1546-1550. https://doi.org/10.5713/ajas.2006.1546
  13. Leroy, G., E. Verrier, J. C. Meriaux, and X. Rognon. 2009. Genetic diversity of dog breeds: Between.breed diversity, breed assignation and conservation approaches. Anim. Genet. 40:333-343. https://doi.org/10.1111/j.1365-2052.2008.01843.x
  14. MAF (Ministry of Agriculture and Forestry, Republic of Korea). 2004. National report on the state of animal genetic resources. Seoul, Rep of Korea. p. 23. Available at: ftp://ftp.fao.org/docrep/fao/010/a1250e/annexes/CountryReports/KoreanRepublic.pdf
  15. Muchadeyi, F. C., H. Eding, C. B. A. Wollny, E. Groeneveld, S. M. Makuza, R. Shamseldin, H. Simianer, and S. Weigend. 2007. Absence of population substructuring in Zimbabwe chicken ecotypes inferred using microsatellite analysis. Anim. Genet. 38:332-339. https://doi.org/10.1111/j.1365-2052.2007.01606.x
  16. Nei, M., F. Tajima, and Y. Tateno. 1983. Accuracy of estimated phylogenetic trees from molecular data. J. Mol. Evol. 19:153-170. https://doi.org/10.1007/BF02300753
  17. Osman, S. A. M., M. Sekino, A. Nishihata, Y. Kobayashi, W. Takenaka, K. Kinoshita, T. Kuwayama, M. Nishibori, Y. Yamamoto, and M. Tsudzuki. 2006. The genetic variability and relationships of Japanese and Foreign chickens assessed by microsatellite DNA profiling. Asian Australas. J. Anim. Sci. 19:1369-1378. https://doi.org/10.5713/ajas.2006.1369
  18. Ota, T. 1993. DISPAN. Pennsylvania State University, PA, USA.
  19. Peakall, R. O. D. and P. E. Smouse. 2006. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6:288-295. https://doi.org/10.1111/j.1471-8286.2005.01155.x
  20. Pritchard, J. K., M. Stephens, and P. Donnelly. 2000. Inference of population structure using multilocus genotype data. Genetics 155:945-959.
  21. Rosenberg, N. A. 2004. DISTRUCT: A program for the graphical display of population structure. Mol. Ecol. Notes 4:137-138.
  22. Seo, D. W., M. R. Hoque, N. R. Choi, H. Sultana, H. B. Park, K. N. Heo, B. S. Kang, H. T. Lim, S. H. Lee, C. Jo, and J. H. Lee. 2013. Discrimination of Korean Native chicken lines using fifteen selected microsatellite markers. Asian Australas. J. Anim. Sci. 26:316-322. https://doi.org/10.5713/ajas.2012.12469
  23. Smith, E. J., S. A. Ray, M. R. Bakst, C. Teuscher, and T. F. Savage. 1996. Simple sequence repeat.based single primer amplification of genomic DNA in random bred populations of turkeys and chickens. Anim. Biotechnol. 7:47-58. https://doi.org/10.1080/10495399609525847
  24. Tadano, R., M. Sekino, M. Nishibori, and M. Tsudzuki. 2007. Microsatellite marker analysis for the genetic relationships among Japanese long-tailed chicken breeds. Poult. Sci. 86:460-469. https://doi.org/10.1093/ps/86.3.460
  25. Vanhala, T., M. Tuiskula-Haavisto, K. Elo, J. Vilkki, and A. Maki-Tanila. 1998. Evaluation of genetic variability and genetic distances between eight chicken lines using microsatellite markers. Poult. Sci. 77:783-790. https://doi.org/10.1093/ps/77.6.783
  26. Weir, B. S. and C. C. Cockerham. 1984. Estimating F-statistics for the analysis of population structure. Evolution 38:1358-1370. https://doi.org/10.2307/2408641
  27. Wilkinson, S., P. Wiener, D. Teverson, C. S. Haley, and P. M. Hocking. 2012. Characterization of the genetic diversity, structure and admixture of British chicken breeds. Anim. Genet. 43:552-563. https://doi.org/10.1111/j.1365-2052.2011.02296.x
  28. Wimmers, K., S. Ponsuksili, T. Hardge, A. Valle.Zarate, P. K. Mathur, and P. Horst. 2000. Genetic distinctness of African, Asian and South American local chickens. Anim. Genet. 31:159-165. https://doi.org/10.1046/j.1365-2052.2000.00605.x

Cited by

  1. DNA Markers for the Genetic Diversity in Korean Native Chicken Breeds: A Review vol.43, pp.2, 2016, https://doi.org/10.5536/KJPS.2016.43.2.63
  2. The breeding history and commercial development of the Korean native chicken vol.73, pp.01, 2017, https://doi.org/10.1017/S004393391600088X
  3. Assessment of the population structure and genetic diversity of Denizli chicken subpopulations using SSR markers pp.1828-051X, 2018, https://doi.org/10.1080/1828051X.2017.1384336
  4. MS 마커를 활용한 지역별 오계 유전자원의 다양성 및 유연관계 분석 vol.45, pp.3, 2014, https://doi.org/10.5536/kjps.2018.45.3.229
  5. Genetic diversity of 21 experimental chicken lines with diverse origins and genetic backgrounds vol.68, pp.2, 2014, https://doi.org/10.1538/expanim.18-0139
  6. 초위성체 마커를 활용한 가축다양성정보시스템(DAD-IS) 등재 재래닭 집단의 유전적 다양성 분석 vol.46, pp.2, 2019, https://doi.org/10.5536/kjps.2019.46.2.65
  7. Deciphering the Patterns of Genetic Admixture and Diversity in the Ecuadorian Creole Chicken vol.9, pp.9, 2014, https://doi.org/10.3390/ani9090670
  8. The Development of Multiplex PCR Microsatellite Marker Sets for Korean Chicken Breeds vol.18, pp.10, 2014, https://doi.org/10.3923/ijps.2019.492.498
  9. Estimating genetic diversity and population structure of 22 chicken breeds in Asia using microsatellite markers vol.33, pp.12, 2014, https://doi.org/10.5713/ajas.19.0958