Abstract
The Euclidean distance between error probability density functions (EDEP) has been used as a performance criterion for supervised adaptive signal processing in impulsive noise environments. One of the drawbacks of the EDEP algorithm is a heavy computational complexity due to the double summation operations at each iteration time. In this paper, a recursive method to reduce its computational burden in the estimation of the EDEP and its gradient is proposed. For the data block size N, the computational complexity for the estimation of the EDEP and its gradient can be reduced to O(N) by the proposed method, while the conventional estimation method has $O(N^2)$. In the performance test, the proposed EDEP and its gradient estimation yield the same estimation results in the steady state as the conventional block-processing method. The simulation results indicates that the proposed method can be effective in practical adaptive signal processing.
오차 신호의 확률분포 사이의 유클리드 거리 (Euclidean distance between error probability density functions, EDEP)는 충격성 잡음 환경의 적응 신호 처리를 위한 성능 지수로 사용되었다. 이 EDEP 알고리듬의 단점 중의 하나로 각 반복 시간마다 수행하는 이중적분에 의해 과다한 계산상의 복잡성이 있다. 이 논문에서는 EDEP 와 그 기울기 계산에서 계산상의 부담을 줄일 수 있는 반복적 추정 방법을 제안하였다. 데이터 블록 크기 N에 대하여, 기존의 추정 방식에 의한 EDEP와 그 기울기 계산량은 $O(N^2)$인 반면, 제안한 방식의 계산량은 O(N)이다. 성능 시험에서 제안한 방식의 EDEP와 그 기울기는 정상상태에서 기존의 블록 처리 방식과 동일한 추정결과를 나타냈다. 이러한 시뮬레이션 결과로부터, 제안한 방식이 실제 적응신호처리 분야에서 효과적인 방식임을 알 수 있다.