DOI QR코드

DOI QR Code

Modeling and performance evaluation of a piezoelectric energy harvester with segmented electrodes

  • Wang, Hongyan (State Key Laboratory of Robotics and System, Harbin Institute of Technology) ;
  • Tang, Lihua (School of Civil and Environmental Engineering, Nanyang Technological University) ;
  • Shan, Xiaobiao (State Key Laboratory of Robotics and System, Harbin Institute of Technology) ;
  • Xie, Tao (State Key Laboratory of Robotics and System, Harbin Institute of Technology) ;
  • Yang, Yaowen (School of Civil and Environmental Engineering, Nanyang Technological University)
  • Received : 2012.12.13
  • Accepted : 2014.02.11
  • Published : 2014.08.25

Abstract

Conventional cantilevered piezoelectric energy harvesters (PEHs) are usually fabricated with continuous electrode configuration (CEC), which suffers from the electrical cancellation at higher vibration modes. Though previous research pointed out that the segmented electrode configuration (SEC) can address this issue, a comprehensive evaluation of the PEH with SEC has yet been reported. With the consideration of delivering power to a common load, the AC outputs from all segmented electrode pairs should be rectified to DC outputs separately. In such case, theoretical formulation for power estimation becomes challenging. This paper proposes a method based on equivalent circuit model (ECM) and circuit simulation to evaluate the performance of the PEH with SEC. First, the parameters of the multi-mode ECM are identified from theoretical analysis. The ECM is then established in SPICE software and validated by the theoretical model and finite element method (FEM) with resistive loads. Subsequently, the optimal performances with SEC and CEC are compared considering the practical DC interface circuit. A comprehensive evaluation of the advantageous performance with SEC is provided for the first time. The results demonstrate the feasibility of using SEC as a simple and effective means to improve the performance of a cantilevered PEH at a higher mode.

Keywords

References

  1. Aladwani, A., Arafa M., Aldraihem, O., Baz, A. (2012), "Cantilevered piezoelectric energy harvester with a dynamic magnifier", J.Vib. Acoust., 134(3), 031004. https://doi.org/10.1115/1.4005824
  2. Anton, S.R. and Sodano, H.A. (2007), "A review of power harvesting using piezoelectric materials (2003-2006)", Smart Mater. Struct., 16(3), 1-21. https://doi.org/10.1088/0964-1726/16/1/001
  3. Beeby, S.P., Tudor, M.J. and White, N.M. (2006), "Energy harvesting vibration sources for microsystems applications", Meas. Sci. and Technol., 17(12), 175- 195. https://doi.org/10.1088/0957-0233/17/12/R01
  4. du Toit, N. (2005), Modeling and design of a MEMS piezoelectric vibration energy harvester, MS Thesis, Massachusetts Institute of Technology, Boston.
  5. du Toit, N., Wardle, B.L. and Kim, S.G. (2005), "Design considerations for MEMS-scale piezoelectric mechanical vibration energy harvesters", Integr. Ferroelectr., 71,121-160. https://doi.org/10.1080/10584580590964574
  6. Erturk, A. and Inman, D.J. (2008), "A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters", J.Vib. Acoust., 130(4), 041002. https://doi.org/10.1115/1.2890402
  7. Erturk, A., Tarazaga, P.A., Farmer, J.R. and Inman, D.J. (2009), "Effect of strain nodes and electrode configuration on piezoelectric energy harvesting from cantilevered Beams", J.Vib. Acoust., 131(1), 0110101-01101011.
  8. Elvin, N.G. and Elvin, A.A. (2009), "A general equivalent circuit model for piezoelectric generators", J. Intel. Mat. Syst. Str., 20(1), 3-9. https://doi.org/10.1177/1045389X08089957
  9. Foisal, A.R., Hong, M.C. and Chung, G.S. (2012), "Multi-frequency electromagnetic energy harvester using a magnetic spring cantilever", Sensor. Actuat. A - Phys., 182, 106-113. https://doi.org/10.1016/j.sna.2012.05.009
  10. Guan, X.C., Huang, Y.H., Li, H. and Ou, J.P. (2012), "Adaptive MR damper cable control system based on piezoelectric power harvesting", Smart Struct. Syst., 10(1), 33-46. https://doi.org/10.12989/sss.2012.10.1.033
  11. Guyomar, D., Badel, A., Lefeuvre, E. and Richard, C. (2005), "Toward energy harvesting using active materials and conversion improvement by nonlinear processing", IEEE T. Ultrason. Ferr.., 52(4), 584-595. https://doi.org/10.1109/TUFFC.2005.1428041
  12. Hagood, N.W., Chung, W. and Von, Flotow A. (1990), "Modelling of piezoelectric actuator dynamics for active structural control", J. Intel. Mat. Syst.Str., 1(3), 327-354. https://doi.org/10.1177/1045389X9000100305
  13. Heinonen, E., Juuti, J. and Leppavuori, S. (2005), "Characterization and modelling of 3D piezoelectric ceramic structures with ATILA software", J. Eur. Ceram. Soc., 25(12), 2467-2470. https://doi.org/10.1016/j.jeurceramsoc.2005.03.083
  14. Jung, H.J., Kim, I.H. and Koo, J.H. (2011), "A multi-functional cable-damper system for vibration mitigation, tension estimation and energy harvesting", Smart Struct. Syst., 7(5), 379-392. https://doi.org/10.12989/sss.2011.7.5.379
  15. Kim, M., Hoegen, M., Dugundji, J. and Wardle, B.L. (2010), "Modeling and experimental verification of proof mass effects on vibration energy harvester performance", Smart Mater. Struct., 19(4), 045023. https://doi.org/10.1088/0964-1726/19/4/045023
  16. Kim, S., Clark, W.W. and Wang, Q.M. (2005), "Piezoelectric energy harvesting with a clamped circular plate: analysis", J.Intel. Mat. Syst. Str., 16(10), 847-854. https://doi.org/10.1177/1045389X05054044
  17. Lallart, M., Pruvost S. and Guyomar, D. (2011), "Electrostatic energy harvesting enhancement using variable equivalent permittivity", Phys. Lett. A., 375(45), 3921-3924. https://doi.org/10.1016/j.physleta.2011.09.043
  18. Liang, J.R. and Liao,W.H. (2012), "Impedance modeling and analysis for piezoelectric energy harvesting systems", IEEE-ASME Trans.Mechatron., 17(6),1145-1157. https://doi.org/10.1109/TMECH.2011.2160275
  19. Liang, J.R. and Liao,W.H. (2012), "Improved design and analysis of self-powered synchronized switch interface circuit for piezoelectric energy harvesting systems", IEEE T. Ind. Electron., 59(4), 1950-1960. https://doi.org/10.1109/TIE.2011.2167116
  20. Lien, I.C. and Shu, Y.C. (2011), "Array of piezoelectric energy harvesters", Proceedings of the SPIE, Conference on Active and Passive Smart Structures and Integrated Systems, San Diego, March.
  21. Lien, I.C., Shu, Y.C., Wu, W.J., Shiu, S.M. and Lin, H.C. (2010), "Revisit of series-SSHI with comparisons to other interfacing circuits in piezoelectric energy harvesting", Smart Mater. Struct., 19 (12), 125009. https://doi.org/10.1088/0964-1726/19/12/125009
  22. Liu H.C., Tay C.J., Quan C.G., Kobayashi T. and Lee C.K. (2011), "Piezoelectric MEMS energy harvester for low-frequency vibrations with wideband operation range and steadily increased output power". J. Microelectromech. S., 20(5), 1131-1142. https://doi.org/10.1109/JMEMS.2011.2162488
  23. Mathuna, C.O., O'Donnell, T., Martinez-Catala, R.V., Rohan, J. and O'Flynn, B. (2008), "Energy scavenging for long-term deployable wireless sensor networks", Talanta, 75(3), 613-623. https://doi.org/10.1016/j.talanta.2007.12.021
  24. Paradiso, J.A. and Starner T. (2005), "Energy scavenging for mobile and wireless electronics", IEEE Pervasive Comput., 4(1), 18-27.
  25. Roundy, S., Wright, P.K. and Rabaey, J. (2003), "A study of low level vibrations as a power source for wireless sensor nodes", Comput. Commun., 26(11), 1131-1144. https://doi.org/10.1016/S0140-3664(02)00248-7
  26. Sodano, H.A., Park, G. and Inman, D.J. (2004), "Estimation of electric charge output for piezoelectric energy harvesting", Strain, 40(2), 49-58. https://doi.org/10.1111/j.1475-1305.2004.00120.x
  27. Tang, L.H. and Yang, Y.W. (2011), "Analysis of synchronized charge extraction for piezoelectric energy harvesting", Smart Mater. Struct., 20(8), 085022. https://doi.org/10.1088/0964-1726/20/8/085022
  28. Tang, L.H. and Yang, Y.W. (2012), "A multiple-degree-of-freedom piezoelectric energy harvesting model", J. Intel. Mat. Syst. Str., 23(14), 1631-1647. https://doi.org/10.1177/1045389X12449920
  29. Tang, G., Liu J.Q., Yang, B., Luo, J.B., Liu, H.S., Li, YG, Yang, C.S., He DN, Dao VD, Tanaka K and Sugiyama S (2012), "Fabrication and analysis of high-performance piezoelectric MEMS generators", J. Micromech. Microeng., 22(6), 065017. https://doi.org/10.1088/0960-1317/22/6/065017
  30. Wang, H.Y., Shan, X.B. and Xie, T. (2012), "An energy harvester combining a piezoelectric cantilever and a single degree of freedom elastic system", J. Zhejiang Univ. Sci. A, 13(7), 526-537. https://doi.org/10.1631/jzus.A1100344
  31. Wu, H., Tang, L.H., Yang, Y.W. and Soh, C.K. (2013), "A novel two-degrees-of-freedom piezoelectric energy harvester", J. Intel. Mat. Syst. Str., 24(3), 357-368. https://doi.org/10.1177/1045389X12457254
  32. Yang, Y.W. and Tang, L.H. (2009), "Equivalent circuit modeling of piezoelectric energy harvesters", J. Intel. Mat. Syst. Str., 20(18), 2223-2235. https://doi.org/10.1177/1045389X09351757
  33. Yang, Y.W., Tang, L.H. and Li H.Y. (2009), "Vibration energy harvesting using macro-fiber composites", Smart Mater. Struct., 18(11), 115025. https://doi.org/10.1088/0964-1726/18/11/115025
  34. Zhang, Y. and Zhu, B.H.,(2012), "Analysis and simulation of multi-mode piezoelectric energy harvesters", Smart Struct. Syst., 9(6), 549-563. https://doi.org/10.12989/sss.2012.9.6.549

Cited by

  1. Numerical Study of the Aerodynamic Response and Energy Harvesting of Polyvinylidene Fluoride Piezoelectric Flags in a Uniform Flow vol.63, pp.6, 2016, https://doi.org/10.1002/jccs.201500308
  2. Distributed Parameter Model for Assorted Piezoelectric Harvester to Prevent Charge Cancellation vol.1, pp.3, 2017, https://doi.org/10.1109/LSENS.2017.2705348
  3. Distributed parameter modeling to prevent charge cancellation for discrete thickness piezoelectric energy harvester vol.141, 2018, https://doi.org/10.1016/j.sse.2017.12.010
  4. Distributed parameter modeling for autonomous charge extraction of various multilevel segmented piezoelectric energy harvesters 2017, https://doi.org/10.1007/s00542-017-3559-6
  5. A Novel Piezoelectric Energy Harvester Using the Macro Fiber Composite Cantilever with a Bicylinder in Water vol.5, pp.4, 2015, https://doi.org/10.3390/app5041942
  6. Finite element modeling of electrically rectified piezoelectric energy harvesters vol.24, pp.9, 2015, https://doi.org/10.1088/0964-1726/24/9/094008
  7. A 2DOF hybrid energy harvester based on combined piezoelectric and electromagnetic conversion mechanisms vol.15, pp.9, 2014, https://doi.org/10.1631/jzus.A1400124
  8. Bimorph piezoelectric energy harvester structurally integrated on a trapezoidal plate vol.18, pp.2, 2016, https://doi.org/10.12989/sss.2016.18.2.249
  9. An Equivalent Circuit of Longitudinal Vibration for a Piezoelectric Structure with Losses vol.18, pp.4, 2018, https://doi.org/10.3390/s18040947
  10. Electret-based microgenerators under sinusoidal excitations: an analytical modeling vol.21, pp.3, 2014, https://doi.org/10.12989/sss.2018.21.3.335
  11. Energy harvesting performance of two side-by-side piezoelectric energy harvesters in fluid flow vol.537, pp.1, 2014, https://doi.org/10.1080/00150193.2018.1528954