References
- Aladwani, A., Arafa M., Aldraihem, O., Baz, A. (2012), "Cantilevered piezoelectric energy harvester with a dynamic magnifier", J.Vib. Acoust., 134(3), 031004. https://doi.org/10.1115/1.4005824
- Anton, S.R. and Sodano, H.A. (2007), "A review of power harvesting using piezoelectric materials (2003-2006)", Smart Mater. Struct., 16(3), 1-21. https://doi.org/10.1088/0964-1726/16/1/001
- Beeby, S.P., Tudor, M.J. and White, N.M. (2006), "Energy harvesting vibration sources for microsystems applications", Meas. Sci. and Technol., 17(12), 175- 195. https://doi.org/10.1088/0957-0233/17/12/R01
- du Toit, N. (2005), Modeling and design of a MEMS piezoelectric vibration energy harvester, MS Thesis, Massachusetts Institute of Technology, Boston.
- du Toit, N., Wardle, B.L. and Kim, S.G. (2005), "Design considerations for MEMS-scale piezoelectric mechanical vibration energy harvesters", Integr. Ferroelectr., 71,121-160. https://doi.org/10.1080/10584580590964574
- Erturk, A. and Inman, D.J. (2008), "A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters", J.Vib. Acoust., 130(4), 041002. https://doi.org/10.1115/1.2890402
- Erturk, A., Tarazaga, P.A., Farmer, J.R. and Inman, D.J. (2009), "Effect of strain nodes and electrode configuration on piezoelectric energy harvesting from cantilevered Beams", J.Vib. Acoust., 131(1), 0110101-01101011.
- Elvin, N.G. and Elvin, A.A. (2009), "A general equivalent circuit model for piezoelectric generators", J. Intel. Mat. Syst. Str., 20(1), 3-9. https://doi.org/10.1177/1045389X08089957
- Foisal, A.R., Hong, M.C. and Chung, G.S. (2012), "Multi-frequency electromagnetic energy harvester using a magnetic spring cantilever", Sensor. Actuat. A - Phys., 182, 106-113. https://doi.org/10.1016/j.sna.2012.05.009
- Guan, X.C., Huang, Y.H., Li, H. and Ou, J.P. (2012), "Adaptive MR damper cable control system based on piezoelectric power harvesting", Smart Struct. Syst., 10(1), 33-46. https://doi.org/10.12989/sss.2012.10.1.033
- Guyomar, D., Badel, A., Lefeuvre, E. and Richard, C. (2005), "Toward energy harvesting using active materials and conversion improvement by nonlinear processing", IEEE T. Ultrason. Ferr.., 52(4), 584-595. https://doi.org/10.1109/TUFFC.2005.1428041
- Hagood, N.W., Chung, W. and Von, Flotow A. (1990), "Modelling of piezoelectric actuator dynamics for active structural control", J. Intel. Mat. Syst.Str., 1(3), 327-354. https://doi.org/10.1177/1045389X9000100305
- Heinonen, E., Juuti, J. and Leppavuori, S. (2005), "Characterization and modelling of 3D piezoelectric ceramic structures with ATILA software", J. Eur. Ceram. Soc., 25(12), 2467-2470. https://doi.org/10.1016/j.jeurceramsoc.2005.03.083
- Jung, H.J., Kim, I.H. and Koo, J.H. (2011), "A multi-functional cable-damper system for vibration mitigation, tension estimation and energy harvesting", Smart Struct. Syst., 7(5), 379-392. https://doi.org/10.12989/sss.2011.7.5.379
- Kim, M., Hoegen, M., Dugundji, J. and Wardle, B.L. (2010), "Modeling and experimental verification of proof mass effects on vibration energy harvester performance", Smart Mater. Struct., 19(4), 045023. https://doi.org/10.1088/0964-1726/19/4/045023
- Kim, S., Clark, W.W. and Wang, Q.M. (2005), "Piezoelectric energy harvesting with a clamped circular plate: analysis", J.Intel. Mat. Syst. Str., 16(10), 847-854. https://doi.org/10.1177/1045389X05054044
- Lallart, M., Pruvost S. and Guyomar, D. (2011), "Electrostatic energy harvesting enhancement using variable equivalent permittivity", Phys. Lett. A., 375(45), 3921-3924. https://doi.org/10.1016/j.physleta.2011.09.043
- Liang, J.R. and Liao,W.H. (2012), "Impedance modeling and analysis for piezoelectric energy harvesting systems", IEEE-ASME Trans.Mechatron., 17(6),1145-1157. https://doi.org/10.1109/TMECH.2011.2160275
- Liang, J.R. and Liao,W.H. (2012), "Improved design and analysis of self-powered synchronized switch interface circuit for piezoelectric energy harvesting systems", IEEE T. Ind. Electron., 59(4), 1950-1960. https://doi.org/10.1109/TIE.2011.2167116
- Lien, I.C. and Shu, Y.C. (2011), "Array of piezoelectric energy harvesters", Proceedings of the SPIE, Conference on Active and Passive Smart Structures and Integrated Systems, San Diego, March.
- Lien, I.C., Shu, Y.C., Wu, W.J., Shiu, S.M. and Lin, H.C. (2010), "Revisit of series-SSHI with comparisons to other interfacing circuits in piezoelectric energy harvesting", Smart Mater. Struct., 19 (12), 125009. https://doi.org/10.1088/0964-1726/19/12/125009
- Liu H.C., Tay C.J., Quan C.G., Kobayashi T. and Lee C.K. (2011), "Piezoelectric MEMS energy harvester for low-frequency vibrations with wideband operation range and steadily increased output power". J. Microelectromech. S., 20(5), 1131-1142. https://doi.org/10.1109/JMEMS.2011.2162488
- Mathuna, C.O., O'Donnell, T., Martinez-Catala, R.V., Rohan, J. and O'Flynn, B. (2008), "Energy scavenging for long-term deployable wireless sensor networks", Talanta, 75(3), 613-623. https://doi.org/10.1016/j.talanta.2007.12.021
- Paradiso, J.A. and Starner T. (2005), "Energy scavenging for mobile and wireless electronics", IEEE Pervasive Comput., 4(1), 18-27.
- Roundy, S., Wright, P.K. and Rabaey, J. (2003), "A study of low level vibrations as a power source for wireless sensor nodes", Comput. Commun., 26(11), 1131-1144. https://doi.org/10.1016/S0140-3664(02)00248-7
- Sodano, H.A., Park, G. and Inman, D.J. (2004), "Estimation of electric charge output for piezoelectric energy harvesting", Strain, 40(2), 49-58. https://doi.org/10.1111/j.1475-1305.2004.00120.x
- Tang, L.H. and Yang, Y.W. (2011), "Analysis of synchronized charge extraction for piezoelectric energy harvesting", Smart Mater. Struct., 20(8), 085022. https://doi.org/10.1088/0964-1726/20/8/085022
- Tang, L.H. and Yang, Y.W. (2012), "A multiple-degree-of-freedom piezoelectric energy harvesting model", J. Intel. Mat. Syst. Str., 23(14), 1631-1647. https://doi.org/10.1177/1045389X12449920
- Tang, G., Liu J.Q., Yang, B., Luo, J.B., Liu, H.S., Li, YG, Yang, C.S., He DN, Dao VD, Tanaka K and Sugiyama S (2012), "Fabrication and analysis of high-performance piezoelectric MEMS generators", J. Micromech. Microeng., 22(6), 065017. https://doi.org/10.1088/0960-1317/22/6/065017
- Wang, H.Y., Shan, X.B. and Xie, T. (2012), "An energy harvester combining a piezoelectric cantilever and a single degree of freedom elastic system", J. Zhejiang Univ. Sci. A, 13(7), 526-537. https://doi.org/10.1631/jzus.A1100344
- Wu, H., Tang, L.H., Yang, Y.W. and Soh, C.K. (2013), "A novel two-degrees-of-freedom piezoelectric energy harvester", J. Intel. Mat. Syst. Str., 24(3), 357-368. https://doi.org/10.1177/1045389X12457254
- Yang, Y.W. and Tang, L.H. (2009), "Equivalent circuit modeling of piezoelectric energy harvesters", J. Intel. Mat. Syst. Str., 20(18), 2223-2235. https://doi.org/10.1177/1045389X09351757
- Yang, Y.W., Tang, L.H. and Li H.Y. (2009), "Vibration energy harvesting using macro-fiber composites", Smart Mater. Struct., 18(11), 115025. https://doi.org/10.1088/0964-1726/18/11/115025
- Zhang, Y. and Zhu, B.H.,(2012), "Analysis and simulation of multi-mode piezoelectric energy harvesters", Smart Struct. Syst., 9(6), 549-563. https://doi.org/10.12989/sss.2012.9.6.549
Cited by
- Numerical Study of the Aerodynamic Response and Energy Harvesting of Polyvinylidene Fluoride Piezoelectric Flags in a Uniform Flow vol.63, pp.6, 2016, https://doi.org/10.1002/jccs.201500308
- Distributed Parameter Model for Assorted Piezoelectric Harvester to Prevent Charge Cancellation vol.1, pp.3, 2017, https://doi.org/10.1109/LSENS.2017.2705348
- Distributed parameter modeling to prevent charge cancellation for discrete thickness piezoelectric energy harvester vol.141, 2018, https://doi.org/10.1016/j.sse.2017.12.010
- Distributed parameter modeling for autonomous charge extraction of various multilevel segmented piezoelectric energy harvesters 2017, https://doi.org/10.1007/s00542-017-3559-6
- A Novel Piezoelectric Energy Harvester Using the Macro Fiber Composite Cantilever with a Bicylinder in Water vol.5, pp.4, 2015, https://doi.org/10.3390/app5041942
- Finite element modeling of electrically rectified piezoelectric energy harvesters vol.24, pp.9, 2015, https://doi.org/10.1088/0964-1726/24/9/094008
- A 2DOF hybrid energy harvester based on combined piezoelectric and electromagnetic conversion mechanisms vol.15, pp.9, 2014, https://doi.org/10.1631/jzus.A1400124
- Bimorph piezoelectric energy harvester structurally integrated on a trapezoidal plate vol.18, pp.2, 2016, https://doi.org/10.12989/sss.2016.18.2.249
- An Equivalent Circuit of Longitudinal Vibration for a Piezoelectric Structure with Losses vol.18, pp.4, 2018, https://doi.org/10.3390/s18040947
- Electret-based microgenerators under sinusoidal excitations: an analytical modeling vol.21, pp.3, 2014, https://doi.org/10.12989/sss.2018.21.3.335
- Energy harvesting performance of two side-by-side piezoelectric energy harvesters in fluid flow vol.537, pp.1, 2014, https://doi.org/10.1080/00150193.2018.1528954