과제정보
연구 과제 주관 기관 : University of Kashan
참고문헌
- Arefi, M. Rahimi, G.H. (2010), "Thermo elastic analy-sis of a functionally graded cylinder under internal pressure using first order shear deformation theory", Sci. Res. Essays, 5(12), 1442-1454.
- Arefi, M. and Rahimi, G.H. (2011), "Three dimensional multi field equations of a functionally graded piezoelectric thick shell with variable thickness, curvature and arbitrary nonhomogeneity", Acta. Mech., 223(1), 63-79.
- Arefi, M. Rahimi, G.H. and Khoshgoftar, M.J. (2011), "Optimized design of a cylinder under mechanical, magnetic and thermal loads as a sensor or actuator using a functionally graded piezomagnetic material", Int. J. Phy. Sci., 6(27), 6315-6322.
- Arefi, M. and Rahimi, G.H. (2011), "Non linear analysis of a functionally graded square plate with two smart layers as sensor and actuator under normal pressure", Smart. Struct. Syst., 8(5), 433-448. https://doi.org/10.12989/sss.2011.8.5.433
- Arefi, M. and Rahimi, G.H. (2011), "General formulation for the thermoelastic analysis of an arbitrary structure made of functionally graded piezoelectric materials, based on the energy method", J. Mech. Eng., 62(4), 221-236.
- Arefi, M. and Rahimi, G.H. (2012), "Studying the nonlinear behavior of the functionally graded annular plates with piezoelectric layers as a sensor and actuator under normal pressure", Smart. Struct. Syst., 9(2), 127-143. https://doi.org/10.12989/sss.2012.9.2.127
- Arefi, M. and Rahimi, G.H. (2012), "The effect of nonhomogeneity and end supports on the thermo elastic behavior of a clampedeclamped FG cylinder under mechanical and thermal loads", Int. J. Pres. Ves. Pip., 96-97, 30-37. https://doi.org/10.1016/j.ijpvp.2012.05.009
- Benjeddou, A. Deu, J.F. and Letombe, S. (2002), "Free vibrations of simply-supported piezoelectric adaptive plates: an exact sandwich formulation", Thin. Wall. Struct., 40(7-8), 573-593. https://doi.org/10.1016/S0263-8231(02)00013-7
- Boresi, A. (1993), Advanced mechanics of materials, 5th Ed., John Wiley and Sons Press, New York, USA.
- Chen, W.Q., Lu, Y., Ye, J.R. and Cai, J.B. (2002), "3D electroelastic fields in a functionally graded piezoceramic hollow sphere under mechanical and electric loading", Arch. Appl. Mech., 72(1), 39-51. https://doi.org/10.1007/s004190100184
- Crawley, E.F. and De Luis, J. (1987), "Use of piezoelectric actuators as elements of intelligent structures", AIAA. J., 25(10), 1373-1385. https://doi.org/10.2514/3.9792
- Crawley, E.F. and Anderson, E.H. (1990), "Detailed models of piezoceramic actuation of beams", J. Intel. Mat. Syst. Str., 1(1), 4-25. https://doi.org/10.1177/1045389X9000100102
- Ding, H.J. Wang, H.M. and Chen, W.Q. (2003), "Dynamic responses of a functionally graded pyroelectric hollow sphere for spherically symmetric problems", Int. J. Mech. Sci., 45(6-7), 1029-1051. https://doi.org/10.1016/j.ijmecsci.2003.09.005
- Ding, H.J. Wang, H.M. and Chen, W.Q. (2003), "Analytical solution for the electroelastic dynamics of a nonhomogeneous spherically isotropic piezoelectric hollow sphere", Arch. Appl. Mech., 73(1-2), 49 -62. https://doi.org/10.1007/s00419-002-0244-7
- Dai, H.L. and Wang, X. (2005), "Thermo-electro-elastic transient responses in piezoelectric hollow structures", Int. J. Solids. Struct., 42, 1151-1171. https://doi.org/10.1016/j.ijsolstr.2004.06.061
- Dai, H.L. and Fu, Y.M. (2007), "Magnetothermoelastic interactions in hollow structures of functionally graded material subjected to mechanical loads", Int. J. Pres. Ves. Pip., 84, 132-138. https://doi.org/10.1016/j.ijpvp.2006.10.001
- Dube, G.P., Kapuria, S. and Dumir, P.C. (1996), "Exact piezothermoelastic solution of simply-supported orthotropic flat panel in cylindrical bending", Int. J. Mech. Sci., 38(11), 1161-1177. https://doi.org/10.1016/0020-7403(96)00020-3
- Frank P, I. (1996), Introduction to heat transfer, John- Wiley Press, USA.
- Huang, J.H. and Wu, T.L. (1996), "Analysis of hybrid multilayered piezoelectric plates", Int. J. Eng. Sci., 34(2), 171-181. https://doi.org/10.1016/0020-7225(95)00087-9
- Im, S. and Atluri, S.N. (1989), "Effects of a piezo-actuator on a finitely deformed beam subjected to general loading", AIAA. J., 27(12), 1801-1807. https://doi.org/10.2514/3.10337
- Jonnalagadda, K.D., Blandford, G.E. and Tauchert, T.R. (1994), "Piezothermoelastic composite plate analysis using first-order shear-deformation theory", Comput. Struct., 51(1), 79-89. https://doi.org/10.1016/0045-7949(94)90038-8
- Kapuria, S., Dumir, P.C. and Sengupta, S. (1996), "Exact piezothermoelastic axisymmetric solution of a finite transversely isotropic cylindrical shell", Comput. Struct., 61(6), 1085-1099. https://doi.org/10.1016/0045-7949(96)00182-4
- Kapuria S., Dube, G.P., Dumir, P.C. and Sengupta, S. (1997), "Levy-type piezothermoelastic solution for hybrid plate by using first-order shear deformation theory", Compos. Part B - Eng., 28, 535-546. https://doi.org/10.1016/S1359-8368(96)00071-6
- Khoshgoftar, M.J.G., Arani, A. and Arefi, M. (2009), "Thermoelastic analysis of a thick walled cylinder made of functionally graded piezoelectric material", Smart. Mater. Struct., 18(11), 115007 (8pp). https://doi.org/10.1088/0964-1726/18/11/115007
- Koizumi, M. (1993), "The concept of FGM", Ceramic Transactions. Functionally. Gradient. Materials, 34, 3-10.
- Lai, M., Rubin, D. and Krempl, E. (1999), Introduction to continuum mechanics, 3rd Ed., Buttenvorth-Heinemann press, Oxford, UK.
- Lee, C.K. (1990), "Theory of laminated piezoelectric plates for the design of distributed sensors/actuators. Part 1: governing equations and reciprocal relationships", J. Acoust. Soc. Am., 87(3), 1144-1158. https://doi.org/10.1121/1.398788
- Lienhard IV, J.H. and Lienhard, V.J.H. (2008), A heat transfer textbook, 3rd Ed., phlogiston press, 15 Woodland Road. Lexington MA.
- Liew, K.M., Zhang, J.Z. Li, C. and Meguid, S.A. (2005), "Three-dimensional analysis of the coupled thermo-piezoelectro-mechanical behavior of multilayered plates using the differential quadrature technique", Int. J. Solids Struct., 42, 4239-4257. https://doi.org/10.1016/j.ijsolstr.2004.12.018
- Mindlin, R.D. (1952), "Forced thickness-shear and flexural vibrations of piezoelectric crystal plates", J. Appl. Phys., 23(1), 83-88. https://doi.org/10.1063/1.1701983
- Mindlin, R.D. (1972), "High frequency vibrations of piezoelectric crystal plates", Int. J. Solids. Struct., 8(7), 895-906. https://doi.org/10.1016/0020-7683(72)90004-2
- Mindlin, R.D. (1984), "Frequencies of piezoelectrically forced vibrations of electroded doubly rotated quartz", Int. J. Solids. Struct., 20(2), 141-157. https://doi.org/10.1016/0020-7683(84)90005-2
- Mitchell, J.A. and Reddy, J.N. (1995), "A refined hybrid plate theory for composite laminates with piezoelectric laminate", Int. J. Solids. Struct., 32(16), 2345-2367. https://doi.org/10.1016/0020-7683(94)00229-P
- Ootao, Y. and Tanigawa, Y. (2007), "Transient piezothermoelastic analysis for a functionally graded thermopiezoelectric hollow sphere", Compos.Struct., 81(4), 540-554. https://doi.org/10.1016/j.compstruct.2006.10.002
- Rahimi, G.H. Arefi, M. and Khoshgoftar, M.J. (2011), "Application and analysis of functionally graded piezoelectrical rotating cylinder as mechanical sensor subjected to pressure and thermal loads", Appl. Math. Mech. (Engl. Ed), 32(8), 997-1008. https://doi.org/10.1007/s10483-011-1475-6
- Rahimi, G.H. Arefi, M. and Khoshgoftar, M.J. (2012), "Electro elastic analysis of a pressurized thick-walled functionally graded piezoelectric cylinder using the first order shear deformation theory and energy method", Mechanika, 18(3), 292-300.
- Senthil, S.V. and Batra R.C. (2001), "Analysis of piezoelectric bimorphs and plates with segmented actuators", Thin. Wall. Struct., 39(1), 23-44 (doi:10.1016/S0263-8231(00)00052-5).
- Tang, Y.Y., Noor, A.K. and Xu, K. (1996), "Assessment of computational models for thermoelectroelastic multilayered plates", Comput. Struct., 61, 915-933. https://doi.org/10.1016/0045-7949(96)00037-5
- Wang, B.T. and Rogers, C.A. (1991), "Laminate plate theory for spatially distributed induced strain actuators", J. Compos. Mater., 25(4), 433-452. https://doi.org/10.1177/002199839102500405
- Wu, C.P. and Syu, Y.S. (2007), "Exact solution of functionally graded piezoelectric shells under cylindrical bending", Int. J. Solids. Struct., 44, 6450-6472. https://doi.org/10.1016/j.ijsolstr.2007.02.037
- Wu, C.P., Chiu, K.H. and Wang, Y.M. (2008), "A review on the three-dimensional analytical approaches of multilayered and functionally graded piezoelectric plates and shells", CMC-Comput. Mater. Continua, 8(2), 93-132.
- Wu, C.P. and Huang, S.E. (2009), "Three-dimensional solutions of functionally graded piezo-thermo-elastic shells and plates using a modified Pagano method", CMC-Comput. Mater. Continua, 12(3), 251-281.
- Wu, C.P. and Jiang, R.Y. (2011), "The 3D coupled analysis of FGPM circular hollow sandwich cylinders under thermal loads", J. Intel. Mater. Syst. Str., 22, 691-712. https://doi.org/10.1177/1045389X11401451
- Wu, C.P., Chiu, K.H. and Jiang, R.Y. (2012), "A meshless collocation method for the coupled analysis of functionally graded piezo-thermo-elastic shells and plates under thermal loads", Int. J. Eng. Sci., 56, 29-48. https://doi.org/10.1016/j.ijengsci.2012.03.001
- Yamanouchi, M., Koizumi, M. and Shiota, I. (1990), Proceedings of the 1st international symposium on functionally gradient materials, Sendai, Japan.
- Xu, K., Noor, A.K. and Tang, Y.Y. (1995), "Three-dimensional solutions for coupled thermoelectroelastic response of multilayered plates", Comput. Method. Appl. M., 126(3-4), 355-371. https://doi.org/10.1016/0045-7825(95)00825-L
- Ying, C. and Zhi-fei, S. (2005), "Analysis of a functionally graded piezothermoelastic hollow cylinder", J. Zhejiang. Univ-Sci. A. (Appl. Phys. & Eng.), 6(9), 956-961. https://doi.org/10.1631/jzus.2005.A0956
피인용 문헌
- Nonlinear responses of an arbitrary FGP circular plate resting on the Winkler-Pasternak foundation vol.16, pp.1, 2015, https://doi.org/10.12989/sss.2015.16.1.081
- Large amplitude free vibration analysis of laminated composite spherical shells embedded with piezoelectric layers vol.16, pp.5, 2015, https://doi.org/10.12989/sss.2015.16.5.853
- Numerical Investigation on Nonlinear Vibration Behavior of Laminated Cylindrical Panel Embedded with PZT Layers vol.144, 2016, https://doi.org/10.1016/j.proeng.2016.05.062
- Influence of magneto-electric environments on size-dependent bending results of three-layer piezomagnetic curved nanobeam based on sinusoidal shear deformation theory 2017, https://doi.org/10.1177/1099636217723186
- Surface effect and non-local elasticity in wave propagation of functionally graded piezoelectric nano-rod excited to applied voltage vol.37, pp.3, 2016, https://doi.org/10.1007/s10483-016-2039-6
- Thermal stress and deformation analysis of a size-dependent curved nanobeam based on sinusoidal shear deformation theory 2017, https://doi.org/10.1016/j.aej.2017.07.003
- Employing the coupled stress components and surface elasticity for nonlocal solution of wave propagation of a functionally graded piezoelectric Love nanorod model vol.28, pp.17, 2017, https://doi.org/10.1177/1045389X17689930
- Size-dependent analysis of a sandwich curved nanobeam integrated with piezomagnetic face-sheets vol.7, 2017, https://doi.org/10.1016/j.rinp.2017.06.032
- Vibration and bending analyses of magneto–electro–thermo-elastic sandwich microplates resting on viscoelastic foundation vol.123, pp.8, 2017, https://doi.org/10.1007/s00339-017-1156-2
- Size-dependent vibration and bending analyses of the piezomagnetic three-layer nanobeams vol.123, pp.3, 2017, https://doi.org/10.1007/s00339-017-0801-0
- Transient sinusoidal shear deformation formulation of a size-dependent three-layer piezo-magnetic curved nanobeam vol.228, pp.10, 2017, https://doi.org/10.1007/s00707-017-1892-6
- Analysis of wave in a functionally graded magneto-electro-elastic nano-rod using nonlocal elasticity model subjected to electric and magnetic potentials vol.227, pp.9, 2016, https://doi.org/10.1007/s00707-016-1584-7
- Nonlinear electromechanical analysis of a functionally graded square plate integrated with smart layers resting on Winkler-Pasternak foundation vol.16, pp.1, 2015, https://doi.org/10.12989/sss.2015.16.1.195
- Free vibration, wave propagation and tension analyses of a sandwich micro/nano rod subjected to electric potential using strain gradient theory vol.3, pp.11, 2016, https://doi.org/10.1088/2053-1591/3/11/115704
- Nonlocal strain gradient theory for the magneto-electro-elastic vibration response of a porous FG-core sandwich nanoplate with piezomagnetic face sheets resting on an elastic foundation pp.1530-7972, 2018, https://doi.org/10.1177/1099636218795378
- Electro-elastic displacement and stress analysis of the piezoelectric doubly curved shells resting on Winkler's foundation subjected to applied voltage pp.1537-6532, 2018, https://doi.org/10.1080/15376494.2018.1455937
- Nonlinear and linear thermo-elastic analyses of a functionally graded spherical shell using the Lagrange strain tensor vol.19, pp.1, 2014, https://doi.org/10.12989/sss.2017.19.1.033
- Electro-magneto-elastic analysis of a three-layer curved beam vol.19, pp.6, 2014, https://doi.org/10.12989/sss.2017.19.6.695
- Nonlocal free vibration analysis of a doubly curved piezoelectric nano shell vol.27, pp.4, 2018, https://doi.org/10.12989/scs.2018.27.4.479
- Two-dimensional thermo-elastic analysis of FG-CNTRC cylindrical pressure vessels vol.27, pp.4, 2014, https://doi.org/10.12989/scs.2018.27.4.525
- Size-dependent free vibration and dynamic analyses of a sandwich microbeam based on higher-order sinusoidal shear deformation theory and strain gradient theory vol.22, pp.1, 2014, https://doi.org/10.12989/sss.2018.22.1.027
- Creep analysis of the FG cylinders: Time-dependent non-axisymmetric behavior vol.28, pp.3, 2014, https://doi.org/10.12989/scs.2018.28.3.331
- Analysis of thick-walled spherical shells subjected to external pressure: Elastoplastic and residual stress analysis vol.234, pp.1, 2020, https://doi.org/10.1177/1464420719882958
- Thermoelastic behaviour of FGM rotating cylinder resting on friction bed subjected to a thermal gradient and an external torque vol.19, pp.1, 2014, https://doi.org/10.1080/14484846.2018.1552736
- Higher order interface conditions for piezoelectric spherical hollow composites: asymptotic approach and transfer matrix homogenization method vol.279, pp.None, 2014, https://doi.org/10.1016/j.compstruct.2021.114760
- Radial vibration analysis for functionally graded ring piezoelectric transducers based on electromechanical equivalent circuit method vol.120, pp.None, 2022, https://doi.org/10.1016/j.ultras.2021.106640