DOI QR코드

DOI QR Code

Comprehensive piezo-thermo-elastic analysis of a thick hollow spherical shell

  • Arefi, M. (Department of Solid Mechanics, Faculty of Mechanical engineering, University of Kashan) ;
  • Khoshgoftar, M.J. (Mechanical Engineering, Tarbiat Modares University)
  • 투고 : 2012.09.11
  • 심사 : 2013.12.29
  • 발행 : 2014.08.25

초록

The present paper develops piezo-thermo-elastic analysis of a thick spherical shell for generalized functionally graded piezoelectric material. The assumed structure is loaded under thermal, electrical and mechanical loads. The mechanical, thermal and electrical properties are graded along the radial direction based on a power function with three different non homogenous indexes. Primarily, the non homogenous heat transfer equation is solved by applying the general boundary conditions, individually. Substitution of stress, strain, electrical displacement and material properties in equilibrium and Maxwell equations present two non homogenous differential equation of order two. The main objective of the present study is to improve the relations between mechanical and electrical loads in hollow spherical shells especially for functionally graded piezoelectric materials. The obtained results can evaluate the effect of every non homogenous parameter on the mechanical and electrical components.

키워드

과제정보

연구 과제 주관 기관 : University of Kashan

참고문헌

  1. Arefi, M. Rahimi, G.H. (2010), "Thermo elastic analy-sis of a functionally graded cylinder under internal pressure using first order shear deformation theory", Sci. Res. Essays, 5(12), 1442-1454.
  2. Arefi, M. and Rahimi, G.H. (2011), "Three dimensional multi field equations of a functionally graded piezoelectric thick shell with variable thickness, curvature and arbitrary nonhomogeneity", Acta. Mech., 223(1), 63-79.
  3. Arefi, M. Rahimi, G.H. and Khoshgoftar, M.J. (2011), "Optimized design of a cylinder under mechanical, magnetic and thermal loads as a sensor or actuator using a functionally graded piezomagnetic material", Int. J. Phy. Sci., 6(27), 6315-6322.
  4. Arefi, M. and Rahimi, G.H. (2011), "Non linear analysis of a functionally graded square plate with two smart layers as sensor and actuator under normal pressure", Smart. Struct. Syst., 8(5), 433-448. https://doi.org/10.12989/sss.2011.8.5.433
  5. Arefi, M. and Rahimi, G.H. (2011), "General formulation for the thermoelastic analysis of an arbitrary structure made of functionally graded piezoelectric materials, based on the energy method", J. Mech. Eng., 62(4), 221-236.
  6. Arefi, M. and Rahimi, G.H. (2012), "Studying the nonlinear behavior of the functionally graded annular plates with piezoelectric layers as a sensor and actuator under normal pressure", Smart. Struct. Syst., 9(2), 127-143. https://doi.org/10.12989/sss.2012.9.2.127
  7. Arefi, M. and Rahimi, G.H. (2012), "The effect of nonhomogeneity and end supports on the thermo elastic behavior of a clampedeclamped FG cylinder under mechanical and thermal loads", Int. J. Pres. Ves. Pip., 96-97, 30-37. https://doi.org/10.1016/j.ijpvp.2012.05.009
  8. Benjeddou, A. Deu, J.F. and Letombe, S. (2002), "Free vibrations of simply-supported piezoelectric adaptive plates: an exact sandwich formulation", Thin. Wall. Struct., 40(7-8), 573-593. https://doi.org/10.1016/S0263-8231(02)00013-7
  9. Boresi, A. (1993), Advanced mechanics of materials, 5th Ed., John Wiley and Sons Press, New York, USA.
  10. Chen, W.Q., Lu, Y., Ye, J.R. and Cai, J.B. (2002), "3D electroelastic fields in a functionally graded piezoceramic hollow sphere under mechanical and electric loading", Arch. Appl. Mech., 72(1), 39-51. https://doi.org/10.1007/s004190100184
  11. Crawley, E.F. and De Luis, J. (1987), "Use of piezoelectric actuators as elements of intelligent structures", AIAA. J., 25(10), 1373-1385. https://doi.org/10.2514/3.9792
  12. Crawley, E.F. and Anderson, E.H. (1990), "Detailed models of piezoceramic actuation of beams", J. Intel. Mat. Syst. Str., 1(1), 4-25. https://doi.org/10.1177/1045389X9000100102
  13. Ding, H.J. Wang, H.M. and Chen, W.Q. (2003), "Dynamic responses of a functionally graded pyroelectric hollow sphere for spherically symmetric problems", Int. J. Mech. Sci., 45(6-7), 1029-1051. https://doi.org/10.1016/j.ijmecsci.2003.09.005
  14. Ding, H.J. Wang, H.M. and Chen, W.Q. (2003), "Analytical solution for the electroelastic dynamics of a nonhomogeneous spherically isotropic piezoelectric hollow sphere", Arch. Appl. Mech., 73(1-2), 49 -62. https://doi.org/10.1007/s00419-002-0244-7
  15. Dai, H.L. and Wang, X. (2005), "Thermo-electro-elastic transient responses in piezoelectric hollow structures", Int. J. Solids. Struct., 42, 1151-1171. https://doi.org/10.1016/j.ijsolstr.2004.06.061
  16. Dai, H.L. and Fu, Y.M. (2007), "Magnetothermoelastic interactions in hollow structures of functionally graded material subjected to mechanical loads", Int. J. Pres. Ves. Pip., 84, 132-138. https://doi.org/10.1016/j.ijpvp.2006.10.001
  17. Dube, G.P., Kapuria, S. and Dumir, P.C. (1996), "Exact piezothermoelastic solution of simply-supported orthotropic flat panel in cylindrical bending", Int. J. Mech. Sci., 38(11), 1161-1177. https://doi.org/10.1016/0020-7403(96)00020-3
  18. Frank P, I. (1996), Introduction to heat transfer, John- Wiley Press, USA.
  19. Huang, J.H. and Wu, T.L. (1996), "Analysis of hybrid multilayered piezoelectric plates", Int. J. Eng. Sci., 34(2), 171-181. https://doi.org/10.1016/0020-7225(95)00087-9
  20. Im, S. and Atluri, S.N. (1989), "Effects of a piezo-actuator on a finitely deformed beam subjected to general loading", AIAA. J., 27(12), 1801-1807. https://doi.org/10.2514/3.10337
  21. Jonnalagadda, K.D., Blandford, G.E. and Tauchert, T.R. (1994), "Piezothermoelastic composite plate analysis using first-order shear-deformation theory", Comput. Struct., 51(1), 79-89. https://doi.org/10.1016/0045-7949(94)90038-8
  22. Kapuria, S., Dumir, P.C. and Sengupta, S. (1996), "Exact piezothermoelastic axisymmetric solution of a finite transversely isotropic cylindrical shell", Comput. Struct., 61(6), 1085-1099. https://doi.org/10.1016/0045-7949(96)00182-4
  23. Kapuria S., Dube, G.P., Dumir, P.C. and Sengupta, S. (1997), "Levy-type piezothermoelastic solution for hybrid plate by using first-order shear deformation theory", Compos. Part B - Eng., 28, 535-546. https://doi.org/10.1016/S1359-8368(96)00071-6
  24. Khoshgoftar, M.J.G., Arani, A. and Arefi, M. (2009), "Thermoelastic analysis of a thick walled cylinder made of functionally graded piezoelectric material", Smart. Mater. Struct., 18(11), 115007 (8pp). https://doi.org/10.1088/0964-1726/18/11/115007
  25. Koizumi, M. (1993), "The concept of FGM", Ceramic Transactions. Functionally. Gradient. Materials, 34, 3-10.
  26. Lai, M., Rubin, D. and Krempl, E. (1999), Introduction to continuum mechanics, 3rd Ed., Buttenvorth-Heinemann press, Oxford, UK.
  27. Lee, C.K. (1990), "Theory of laminated piezoelectric plates for the design of distributed sensors/actuators. Part 1: governing equations and reciprocal relationships", J. Acoust. Soc. Am., 87(3), 1144-1158. https://doi.org/10.1121/1.398788
  28. Lienhard IV, J.H. and Lienhard, V.J.H. (2008), A heat transfer textbook, 3rd Ed., phlogiston press, 15 Woodland Road. Lexington MA.
  29. Liew, K.M., Zhang, J.Z. Li, C. and Meguid, S.A. (2005), "Three-dimensional analysis of the coupled thermo-piezoelectro-mechanical behavior of multilayered plates using the differential quadrature technique", Int. J. Solids Struct., 42, 4239-4257. https://doi.org/10.1016/j.ijsolstr.2004.12.018
  30. Mindlin, R.D. (1952), "Forced thickness-shear and flexural vibrations of piezoelectric crystal plates", J. Appl. Phys., 23(1), 83-88. https://doi.org/10.1063/1.1701983
  31. Mindlin, R.D. (1972), "High frequency vibrations of piezoelectric crystal plates", Int. J. Solids. Struct., 8(7), 895-906. https://doi.org/10.1016/0020-7683(72)90004-2
  32. Mindlin, R.D. (1984), "Frequencies of piezoelectrically forced vibrations of electroded doubly rotated quartz", Int. J. Solids. Struct., 20(2), 141-157. https://doi.org/10.1016/0020-7683(84)90005-2
  33. Mitchell, J.A. and Reddy, J.N. (1995), "A refined hybrid plate theory for composite laminates with piezoelectric laminate", Int. J. Solids. Struct., 32(16), 2345-2367. https://doi.org/10.1016/0020-7683(94)00229-P
  34. Ootao, Y. and Tanigawa, Y. (2007), "Transient piezothermoelastic analysis for a functionally graded thermopiezoelectric hollow sphere", Compos.Struct., 81(4), 540-554. https://doi.org/10.1016/j.compstruct.2006.10.002
  35. Rahimi, G.H. Arefi, M. and Khoshgoftar, M.J. (2011), "Application and analysis of functionally graded piezoelectrical rotating cylinder as mechanical sensor subjected to pressure and thermal loads", Appl. Math. Mech. (Engl. Ed), 32(8), 997-1008. https://doi.org/10.1007/s10483-011-1475-6
  36. Rahimi, G.H. Arefi, M. and Khoshgoftar, M.J. (2012), "Electro elastic analysis of a pressurized thick-walled functionally graded piezoelectric cylinder using the first order shear deformation theory and energy method", Mechanika, 18(3), 292-300.
  37. Senthil, S.V. and Batra R.C. (2001), "Analysis of piezoelectric bimorphs and plates with segmented actuators", Thin. Wall. Struct., 39(1), 23-44 (doi:10.1016/S0263-8231(00)00052-5).
  38. Tang, Y.Y., Noor, A.K. and Xu, K. (1996), "Assessment of computational models for thermoelectroelastic multilayered plates", Comput. Struct., 61, 915-933. https://doi.org/10.1016/0045-7949(96)00037-5
  39. Wang, B.T. and Rogers, C.A. (1991), "Laminate plate theory for spatially distributed induced strain actuators", J. Compos. Mater., 25(4), 433-452. https://doi.org/10.1177/002199839102500405
  40. Wu, C.P. and Syu, Y.S. (2007), "Exact solution of functionally graded piezoelectric shells under cylindrical bending", Int. J. Solids. Struct., 44, 6450-6472. https://doi.org/10.1016/j.ijsolstr.2007.02.037
  41. Wu, C.P., Chiu, K.H. and Wang, Y.M. (2008), "A review on the three-dimensional analytical approaches of multilayered and functionally graded piezoelectric plates and shells", CMC-Comput. Mater. Continua, 8(2), 93-132.
  42. Wu, C.P. and Huang, S.E. (2009), "Three-dimensional solutions of functionally graded piezo-thermo-elastic shells and plates using a modified Pagano method", CMC-Comput. Mater. Continua, 12(3), 251-281.
  43. Wu, C.P. and Jiang, R.Y. (2011), "The 3D coupled analysis of FGPM circular hollow sandwich cylinders under thermal loads", J. Intel. Mater. Syst. Str., 22, 691-712. https://doi.org/10.1177/1045389X11401451
  44. Wu, C.P., Chiu, K.H. and Jiang, R.Y. (2012), "A meshless collocation method for the coupled analysis of functionally graded piezo-thermo-elastic shells and plates under thermal loads", Int. J. Eng. Sci., 56, 29-48. https://doi.org/10.1016/j.ijengsci.2012.03.001
  45. Yamanouchi, M., Koizumi, M. and Shiota, I. (1990), Proceedings of the 1st international symposium on functionally gradient materials, Sendai, Japan.
  46. Xu, K., Noor, A.K. and Tang, Y.Y. (1995), "Three-dimensional solutions for coupled thermoelectroelastic response of multilayered plates", Comput. Method. Appl. M., 126(3-4), 355-371. https://doi.org/10.1016/0045-7825(95)00825-L
  47. Ying, C. and Zhi-fei, S. (2005), "Analysis of a functionally graded piezothermoelastic hollow cylinder", J. Zhejiang. Univ-Sci. A. (Appl. Phys. & Eng.), 6(9), 956-961. https://doi.org/10.1631/jzus.2005.A0956

피인용 문헌

  1. Nonlinear responses of an arbitrary FGP circular plate resting on the Winkler-Pasternak foundation vol.16, pp.1, 2015, https://doi.org/10.12989/sss.2015.16.1.081
  2. Large amplitude free vibration analysis of laminated composite spherical shells embedded with piezoelectric layers vol.16, pp.5, 2015, https://doi.org/10.12989/sss.2015.16.5.853
  3. Numerical Investigation on Nonlinear Vibration Behavior of Laminated Cylindrical Panel Embedded with PZT Layers vol.144, 2016, https://doi.org/10.1016/j.proeng.2016.05.062
  4. Influence of magneto-electric environments on size-dependent bending results of three-layer piezomagnetic curved nanobeam based on sinusoidal shear deformation theory 2017, https://doi.org/10.1177/1099636217723186
  5. Surface effect and non-local elasticity in wave propagation of functionally graded piezoelectric nano-rod excited to applied voltage vol.37, pp.3, 2016, https://doi.org/10.1007/s10483-016-2039-6
  6. Thermal stress and deformation analysis of a size-dependent curved nanobeam based on sinusoidal shear deformation theory 2017, https://doi.org/10.1016/j.aej.2017.07.003
  7. Employing the coupled stress components and surface elasticity for nonlocal solution of wave propagation of a functionally graded piezoelectric Love nanorod model vol.28, pp.17, 2017, https://doi.org/10.1177/1045389X17689930
  8. Size-dependent analysis of a sandwich curved nanobeam integrated with piezomagnetic face-sheets vol.7, 2017, https://doi.org/10.1016/j.rinp.2017.06.032
  9. Vibration and bending analyses of magneto–electro–thermo-elastic sandwich microplates resting on viscoelastic foundation vol.123, pp.8, 2017, https://doi.org/10.1007/s00339-017-1156-2
  10. Size-dependent vibration and bending analyses of the piezomagnetic three-layer nanobeams vol.123, pp.3, 2017, https://doi.org/10.1007/s00339-017-0801-0
  11. Transient sinusoidal shear deformation formulation of a size-dependent three-layer piezo-magnetic curved nanobeam vol.228, pp.10, 2017, https://doi.org/10.1007/s00707-017-1892-6
  12. Analysis of wave in a functionally graded magneto-electro-elastic nano-rod using nonlocal elasticity model subjected to electric and magnetic potentials vol.227, pp.9, 2016, https://doi.org/10.1007/s00707-016-1584-7
  13. Nonlinear electromechanical analysis of a functionally graded square plate integrated with smart layers resting on Winkler-Pasternak foundation vol.16, pp.1, 2015, https://doi.org/10.12989/sss.2015.16.1.195
  14. Free vibration, wave propagation and tension analyses of a sandwich micro/nano rod subjected to electric potential using strain gradient theory vol.3, pp.11, 2016, https://doi.org/10.1088/2053-1591/3/11/115704
  15. Nonlocal strain gradient theory for the magneto-electro-elastic vibration response of a porous FG-core sandwich nanoplate with piezomagnetic face sheets resting on an elastic foundation pp.1530-7972, 2018, https://doi.org/10.1177/1099636218795378
  16. Electro-elastic displacement and stress analysis of the piezoelectric doubly curved shells resting on Winkler's foundation subjected to applied voltage pp.1537-6532, 2018, https://doi.org/10.1080/15376494.2018.1455937
  17. Nonlinear and linear thermo-elastic analyses of a functionally graded spherical shell using the Lagrange strain tensor vol.19, pp.1, 2014, https://doi.org/10.12989/sss.2017.19.1.033
  18. Electro-magneto-elastic analysis of a three-layer curved beam vol.19, pp.6, 2014, https://doi.org/10.12989/sss.2017.19.6.695
  19. Nonlocal free vibration analysis of a doubly curved piezoelectric nano shell vol.27, pp.4, 2018, https://doi.org/10.12989/scs.2018.27.4.479
  20. Two-dimensional thermo-elastic analysis of FG-CNTRC cylindrical pressure vessels vol.27, pp.4, 2014, https://doi.org/10.12989/scs.2018.27.4.525
  21. Size-dependent free vibration and dynamic analyses of a sandwich microbeam based on higher-order sinusoidal shear deformation theory and strain gradient theory vol.22, pp.1, 2014, https://doi.org/10.12989/sss.2018.22.1.027
  22. Creep analysis of the FG cylinders: Time-dependent non-axisymmetric behavior vol.28, pp.3, 2014, https://doi.org/10.12989/scs.2018.28.3.331
  23. Analysis of thick-walled spherical shells subjected to external pressure: Elastoplastic and residual stress analysis vol.234, pp.1, 2020, https://doi.org/10.1177/1464420719882958
  24. Thermoelastic behaviour of FGM rotating cylinder resting on friction bed subjected to a thermal gradient and an external torque vol.19, pp.1, 2014, https://doi.org/10.1080/14484846.2018.1552736
  25. Higher order interface conditions for piezoelectric spherical hollow composites: asymptotic approach and transfer matrix homogenization method vol.279, pp.None, 2014, https://doi.org/10.1016/j.compstruct.2021.114760
  26. Radial vibration analysis for functionally graded ring piezoelectric transducers based on electromechanical equivalent circuit method vol.120, pp.None, 2022, https://doi.org/10.1016/j.ultras.2021.106640