References
- Akavci, S.S. (2007), "Buckling and free vibration analysis of symmetric and antisymmetric laminated composite plates on an elastic foundation", J. Reinf. Plast. Compos., 26, 1907-1919. https://doi.org/10.1177/0731684407081766
- Brischetto, S., Carrera, E. and Demasi, L. (2009), "Improved response of unsymmetrically laminated sandwich plates by using zig-zag functions", J. Sandw. Struct. Mater., 11, 257-267. https://doi.org/10.1177/1099636208099379
- Chalak, H.D., Chakrabarti, A., Iqbal M.A. and Sheikh, A.H. (2012), "An improved C0 FE model for the analysis of laminated sandwich plate with soft core", Finite Elem. Anal. Des., 56, 20-31. https://doi.org/10.1016/j.finel.2012.02.005
- Dehkordi, M.B., Cinefra, M., Khalili, S.M.R. and Carrera, E. (2013), "Mixed LW/ESL models for the analysis of sandwich plates with composite faces", Compos. Struct., 98, 330-339. https://doi.org/10.1016/j.compstruct.2012.11.016
- Doong, J.L., Lee, C. and Fung, C.T. (1991), "Vibration and stability of laminated plates based on modified plate theory", J. Sound Vib., 151, 193-30. https://doi.org/10.1016/0022-460X(91)90851-A
- Ghugal, Y.M. and Shimpi, R.P. (2002), "A review of refined shear deformation theories for isotropic and anisotropic laminated plates", J. Reinf. Plast. Compos., 21, 775-813. https://doi.org/10.1177/073168402128988481
- Ghugal, Y.M. and Kulkarni, S.K. (2011), "Thermal stress analysis of cross-ply laminated plates using refined shear deformation theory", J. Exp. App. Mech., 2(1), 47-66.
- Ghugal, Y.M. and Sayyad, A.S. (2010), "A flexure of thick isotropic plate using trigonometric shear deformation theory", J. Solid Mech., 2(1), 79-90.
- Ghugal, Y.M. and Sayyad, A.S. (2011a), "Free vibration of thick isotropic plates using trigonometric shear deformation theory", J. Solid Mech., 3(2), 172-182.
- Ghugal, Y.M. and Sayyad, A.S. (2011b), "Free vibration of thick orthotropic plates using trigonometric shear deformation theory", Lat. Am. J. Solid. Struct., 8, 229-243. https://doi.org/10.1590/S1679-78252011000300002
- Ghugal, Y.M. and Sayyad, A.S. (2013a), "Static flexure of thick orthotropic plates using trigonometric shear deformation theory", J. Struct. Eng., 39(5), 512-521.
- Ghugal, Y.M. and Sayyad, A.S. (2013b), "Stress analysis of thick laminated plates using trigonometric shear deformation theory", Int. J. Appl. Mech., 5(1), 1-23.
- Grover, N., Maiti, D.K. and Singh, B.N. (2013), "A new inverse hyperbolic shear deformation theory for static and buckling analysis of laminated composite and sandwich plates", Compos. Struct., 95, 667-675. https://doi.org/10.1016/j.compstruct.2012.08.012
- Jones, R.M. (1975), Mechanics of Composite Materials, McGraw Hill Kogakusha, Ltd, Tokyo.
- Kant, T. and Swaminathan, K. (2002), "Analytical solutions for the static analysis of laminated composite and sandwich plates based on a higher order refined theory", Compos. Struct., 56, 329-344. https://doi.org/10.1016/S0263-8223(02)00017-X
- Kapuria, S. and Nath, J.K. (2013), "On the accuracy of recent global-local theories for bending and vibration of laminated plates", Compos. Struct., 95, 163-172. https://doi.org/10.1016/j.compstruct.2012.06.018
- Karama, M., Afaq, K.S. and Mistou, S. (2009), "A new theory for laminated composite plates", Proc. IMechE Part L: J. Materials: Des. Appl., 223, 53-62.
- Kreja, I. (2011), "A literature review on computational models for laminated composite and sandwich panels", Centr. Eur. J. Eng., 1(1), 59-80 https://doi.org/10.2478/s13531-011-0005-x
- Krishna Murty, A.V. (1986), "Towards a consistent plate theory", AIAA J., 24, 1047-1048. https://doi.org/10.2514/3.9388
- Krishna Murty, A.V. (1987), "Theoretical modeling of laminated composite plates", Sadhana, 11(3/4), 357-365. https://doi.org/10.1007/BF02811362
- Leung, A.Y.T., Niu, J., Lim, C.W. and Song, K. (2003), "A new unconstrained third-order plate theory for Navier solutions of symmetrically laminated plates", Compos. Struct., 81, 2539-2548. https://doi.org/10.1016/S0045-7949(03)00290-6
- Levy, M. (1877), "Memoire sur la theorie des plaques elastique planes", J. des Math. Pures et Appl., 3, 219-306.
- Lo, K.H., Christensen, R.M. and Wu, E.M. (1977a), "A high-order theory of plate deformation, part-1: homogeneous plates", ASME J. Appl. Mech., 44, 663-668. https://doi.org/10.1115/1.3424154
- Lo, K.H., Christensen, R.M. and Wu, E.M. (1977b), "A high-order theory of plate deformation, part-2: laminated plates", ASME J. Appl. Mech., 44, 669-676. https://doi.org/10.1115/1.3424155
- Mantari, J.L., Oktem, A.S. and Soares, C.G. (2012), "A new trigonometric shear deformation theory for isotropic, laminated composite and sandwich plates", Int. J. Solids and Struct., 49, 43-53. https://doi.org/10.1016/j.ijsolstr.2011.09.008
- Metin, A. (2006), "Comparison of various shear deformation theories for bending, buckling, and vibration of rectangular symmetric cross-ply plate with simply supported edges", J. Compos. Mater., 40, 2143-2155. https://doi.org/10.1177/0021998306062313
- Metin, A. (2009), "A new shear deformation theory for laminated composite plates", Compos. Struct., 89, 94-101. https://doi.org/10.1016/j.compstruct.2008.07.008
- Mindlin, R.D. (1951), "Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates", ASME J. Appl. Mech., 18, 31-38.
- Nik, A.M.N and Tahani, M. (2010), "Free vibration analysis of moderately thick rectangular laminated composite plates with arbitrary boundary conditions", Struct. Eng. Mech., 35(2), 217-240. https://doi.org/10.12989/sem.2010.35.2.217
- Noor, A.K. and Burton, W.S. (1989), "Assessment of shear deformation theories for multilayered composite plates", Appl. Mech. Rev., 42, 1-13. https://doi.org/10.1115/1.3152418
- Pagano, N.J. (1970), "Exact solutions for bidirectional composites and sandwich plates", J. Compos. Mater., 4, 20-34. https://doi.org/10.1177/002199837000400102
- Pandit, M.K., Sheikh, A.H. and Singh, B.N. (2010), "Analysis of laminated sandwich plates based on an improved higher order zigzag theory", J. Sandw. Struct. Mater., 12, 307-326. https://doi.org/10.1177/1099636209104517
- Reddy, J.N. (1984), "A simple higher order theory for laminated composite plates", ASME J. Appl. Mech., 51, 745-752. https://doi.org/10.1115/1.3167719
- Reddy, J.N. and Phan, N.D. (1985), "Stability and vibration of isotropic, orthotropic and laminated plates according to higher order shear deformation theory", J. Sound Vib., 98, 157-170. https://doi.org/10.1016/0022-460X(85)90383-9
- Reissner, E. (1944), "On the theory of bending of elastic plates", J. Math. Phy., 23, 184-191. https://doi.org/10.1002/sapm1944231184
- Reissner, E. (1945), "The effect of transverse shear deformation on the bending of elastic plates", ASME J. Appl. Mech., 12, 69-77.
- Sahoo, R. and Singh, B.N. (2013a), "A new inverse hyperbolic zigzag theory for the static analysis of laminated composite and sandwich plates", Compos. Struct., 105, 385-397. https://doi.org/10.1016/j.compstruct.2013.05.043
- Sahoo, R. and Singh, B.N. (2013a), "A new shear deformation theory for the static analysis of laminated composite and sandwich plates", Int. J. Mech. Sci., 75, 324-336. https://doi.org/10.1016/j.ijmecsci.2013.08.002
- Savithri, S. and Varadan, T.K. (1992), "A simple higher order theory for homogeneous plates", Mech. Res. Comm., 19, 65- 71. https://doi.org/10.1016/0093-6413(92)90014-2
- Sayyad, A.S. and Ghugal, Y.M. (2011), "Effect of transverse shear and transverse normal strain on bending analysis of cross-ply laminated beams", Int. J. Appl. Math. Mech., 7(12), 85-118.
- Sayyad, A.S. and Ghugal, Y.M. (2014a), "A new shear and normal deformation theory for isotropic, transversely isotropic, laminated composite and sandwich plates", Int. J. Mech. Mater. Des., DOI 10.1007/s10999-014-9244-3.
- Sayyad, A.S. and Ghugal, Y.M. (2014b), "On the buckling of isotropic, transversely isotropic and laminated composite rectangular plates", Int. J. Struct. Stab. Dyn., 14(6), 1-32. https://doi.org/10.1007/s13296-014-1001-9
- Sayyad, A.S. and Ghugal, Y.M. (2013), "Effect of stress concentration on laminated plates", Cambridge J. Mech., 29, 241-252. https://doi.org/10.1017/jmech.2012.131
- Shimpi, R.P. and Ghugal, Y.M. (2000), "A layerwise trigonometric shear deformation theory for two layered cross-ply laminated Plates", Mech. Adv. Mater. Struct., 7, 331-353. https://doi.org/10.1080/10759410050201690
- Shimpi, R.P. and Ainapure, A.V. (2004), "Free vibration of two-layered cross-ply laminated plates using layer-wise trigonometric shear deformation theory", J. Reinf. Plast. Compos., 23(4), 389-405. https://doi.org/10.1177/0731684404031893
- Soldatos, K.P. (1988), "On certain refined theories for plate bending", ASME J. Appl. Mech., 55, 994-995. https://doi.org/10.1115/1.3173757
- Stein, M. (1986), "Nonlinear theory for plates and shells including effect of transverse shearing", AIAA J., 24, 1537-1544. https://doi.org/10.2514/3.9477
- Thai, N.D., D'Ottavio, M. and Caron, J.F. (2013), "Bending analysis of laminated and sandwich plates using a layer-wise stress model", Compos. Struct., 96, 135-142. https://doi.org/10.1016/j.compstruct.2012.08.032
- Todhunter, I. and Pearson, K. (1893), A History of the Theory of Elasticity, Vol-II, Part-I, and Vol-II, Part-II, Dover Publications, Inc., New York.
- Wanji, C. and Zhen, W. (2008), "A selective review on recent development of displacement-based laminated plate theories", Rec. Pat. Mech. Eng., 1, 29-44. https://doi.org/10.2174/2212797610801010029
-
Zhen, W. and Wanji, C. (2010), "A
$C^0$ -type higher-order theory for bending analysis of laminated composite and sandwich plates", Compos. Struct., 92, 653-661. https://doi.org/10.1016/j.compstruct.2009.09.032
Cited by
- A refined theory with stretching effect for the flexure analysis of laminated composite plates vol.11, pp.5, 2016, https://doi.org/10.12989/gae.2016.11.5.671
- A Unified Shear Deformation Theory for the Bending of Isotropic, Functionally Graded, Laminated and Sandwich Beams and Plates vol.09, pp.01, 2017, https://doi.org/10.1142/S1758825117500077
- An inverse trigonometric shear deformation theory for supersonic flutter characteristics of multilayered composite plates vol.52, 2016, https://doi.org/10.1016/j.ast.2016.02.017
- Torsional analysis of a single-bent leaf flexure vol.54, pp.1, 2015, https://doi.org/10.12989/sem.2015.54.1.189
- On bending, buckling and vibration responses of functionally graded carbon nanotube-reinforced composite beams vol.19, pp.5, 2015, https://doi.org/10.12989/scs.2015.19.5.1259
- Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories vol.53, pp.6, 2015, https://doi.org/10.12989/sem.2015.53.6.1143
- A novel four variable refined plate theory for laminated composite plates vol.22, pp.4, 2016, https://doi.org/10.12989/scs.2016.22.4.713
- Modeling and analysis of functionally graded sandwich beams: A review pp.1537-6532, 2018, https://doi.org/10.1080/15376494.2018.1447178
- On buckling and free vibration studies of sandwich plates and cylindrical shells pp.1530-7980, 2018, https://doi.org/10.1177/0892705718809810
- 2D analysis of laminated composite and sandwich plates using a new fifth-order plate theory vol.15, pp.9, 2018, https://doi.org/10.1590/1679-78254834
- A nonlocal zeroth-order shear deformation theory for nonlinear postbuckling of nanobeams vol.62, pp.6, 2017, https://doi.org/10.12989/sem.2017.62.6.695
- A new nonlocal trigonometric shear deformation theory for thermal buckling analysis of embedded nanosize FG plates vol.64, pp.4, 2014, https://doi.org/10.12989/sem.2017.64.4.391
- Dynamic analysis for anti-symmetric cross-ply and angle-ply laminates for simply supported thick hybrid rectangular plates vol.7, pp.2, 2014, https://doi.org/10.12989/amr.2018.7.2.119
- New Displacement Model for Accurate Prediction of Transverse Shear Stresses in Laminated and Sandwich Rectangular Plates vol.32, pp.5, 2014, https://doi.org/10.1061/(asce)as.1943-5525.0001074
- Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory vol.24, pp.4, 2019, https://doi.org/10.12989/cac.2019.24.4.369
- Reliability analysis of laminated composite shells by response surface method based on HSDT vol.72, pp.2, 2014, https://doi.org/10.12989/sem.2019.72.2.203
- Thermal flexural analysis of anti-symmetric cross-ply laminated plates using a four variable refined theory vol.25, pp.4, 2014, https://doi.org/10.12989/sss.2020.25.4.409
- A refined sinusoidal theory for laminated composite and sandwich plates vol.27, pp.23, 2014, https://doi.org/10.1080/15376494.2018.1538469