References
- Alshorbagy, A., Eltaher, M. and Mahmoud, F. (2011), "Free vibration characteristics of a functionally graded beam by finite element method", Appl. Math. Model., 35(1), 412-425. https://doi.org/10.1016/j.apm.2010.07.006
- Ananthasuresh, G. (2004), "Inverse mode shape problems for bars and beams with flexible supports", Inverse Problems, Design and Optimization Symposium, Rio de Janeiro, Brazil.
- Azizi, N., Saadatpour, M. and Mahzoon, M. (2011), "Using spectral element method for analyzing continuous beams and bridges subjected to a moving load", Appl. Math. Model., 36(8), 3580-3592.
- Barcilon, V. (1982), "Inverse problem for the vibrating beam in the free-clamped configuration", Philos. T. Roy. Soc. A, 304(1483), 211-251. https://doi.org/10.1098/rsta.1982.0012
- Bayat, M. and Pakar, I. (2012), "Accurate analytical solution for nonlinear free vibration of beams", Struct. Eng. Mech., 43(3), 337-347. https://doi.org/10.12989/sem.2012.43.3.337
- Burak, S. and Ram, Y. (2001), "The construction of physical parameters from modal data", Mech. Syst. Signal Pr., 15(1), 3-10. https://doi.org/10.1006/mssp.2000.1348
- Cha, P. (2002), "Specifying nodes at multiple locations for any normal mode of a linear elastic structure", J. Sound Vib., 250(5), 923-934. https://doi.org/10.1006/jsvi.2001.3964
- Cha, P. (2004), "Imposing nodes at arbitrary locations for general elastic structures during harmonic excitations", J. Sound Vib., 272(3), 853-868. https://doi.org/10.1016/S0022-460X(03)00495-4
- Cha, P. (2005), "Enforcing nodes at required locations in a harmonically excited structure using simple oscillators", J. Sound Vib., 279(3), 799-816. https://doi.org/10.1016/j.jsv.2003.11.067
- Cha, P. and Chen, C. (2011), "Quenching vibration along a harmonically excited linear structure using lumped masses", J. Vib. Control, 17(4), 527-539. https://doi.org/10.1177/1077546310362448
- Cha, P. and Pierre, C. (1999), "Imposing nodes to the normal modes of a linear elastic structure", J. Sound Vib., 219(4), 669-687. https://doi.org/10.1006/jsvi.1998.1914
- Cha, P. and Rinker, J. (2012), "Enforcing nodes to suppress vibration along a harmonically forced damped Euler-Bernoulli beam", J. Vib. Acoust., 134(5), 051010-051019. https://doi.org/10.1115/1.4006375
- Cha, P. and Zhou, X. (2006), "Imposing points of zero displacements and zero slopes along any linear structure during harmonic excitations", J. Sound Vib., 297(1), 55-71. https://doi.org/10.1016/j.jsv.2006.03.032
- Elishakoff, I. (2005), Eigenvalues Of Inhomogeneous Structures: Unusual Closed-form Solutions, CRC Press, Boca Raton, Florida, USA.
- Eltaher, M., Alshorbagy, A. and Mahmoud, F. (2012), "Vibration analysis of Euler-Bernoulli nanobeams by using finite element method", Appl. Math. Model., 37(7), 4787-4797.
- Gafsi, W., Choura, S. and Nayfeh, A. (2009), "Assignment of geometrical and physical parameters for the confinement of vibrations in flexible structures", J. Aerospace Eng., 22(4), 403-414. https://doi.org/10.1061/(ASCE)0893-1321(2009)22:4(403)
- Gladwell, G. (1986), "The inverse problem for the Euler-Bernoulli beam", P. Roy. Soc. Lond. A Mat., 407(1832), 199-218. https://doi.org/10.1098/rspa.1986.0093
- Gunda, J.B., Singh, A.P., Chhabra, P.S. and Ganguli, R. (2007), "Free vibration analysis of rotating tapered blades using Fourier-p super element", Struct. Eng. Mech., 27(2), 243-257. https://doi.org/10.12989/sem.2007.27.2.243
- Hodges, D. Y. and Rutkowski, M. Y. (1981), "Free-vibration analysis of rotating beams by a variable-order finite-element method", AIAA J., 19(11), 1459-1466. https://doi.org/10.2514/3.60082
- Kisa, M. (2012), "Vibration and stability of axially loaded cracked beams", Struct. Eng. Mech., 44(3), 305-323. https://doi.org/10.12989/sem.2012.44.3.305
- Kural, S. and Ozkaya, E. (2012), "Vibrations of an axially accelerating, multiple supported flexible beam", Struct. Eng. Mech., 44(4), 521-538. https://doi.org/10.12989/sem.2012.44.4.521
- Lai, E. and Ananthasuresh, G. (2002), "On the design of bars and beams for desired mode shapes", J. Sound Vib., 254(2), 393-406. https://doi.org/10.1006/jsvi.2001.4101
- Liu, Z., Yin, Y., Wang, F., Zhao, Y. and Cai, L. (2013), "Study on modified differential transform method for free vibration analysis of uniform Euler-Bernoulli beam", Struct. Eng. Mech., 48(5), 697-709. https://doi.org/10.12989/sem.2013.48.5.697
- Maeda, Y., Nishiwaki, S., Izui, K., Yoshimura, M., Matsui, K. and Terada, K. (2006), "Structural topology optimization of vibrating structures with specified eigenfrequencies and eigenmode shapes", Int. J. Numer. Meth. Eng., 67(5), 597-628. https://doi.org/10.1002/nme.1626
- Meirovitch, L. (1986), Elements Of Vibration Analysis, Vol. 2, McGraw-Hill, New York.
- Mottershead, J., Mares, C. and Friswell, M. (2001), "An inverse method for the assignment of vibration nodes", Mech. Syst. Signal Pr., 15(1), 87-100. https://doi.org/10.1006/mssp.2000.1353
- Neuringer, J. and Elishakoff, I. (2001), "Inhomogeneous beams that may possess a prescribed polynomial second mode", Chaos Soliton. Fract., 12(5), 881-896. https://doi.org/10.1016/S0960-0779(00)00043-6
- Niels, L. (2000), "Design of cantilever probes for atomic force microscopy (AFM)", Eng. Optimiz., 32(3), 373-392. https://doi.org/10.1080/03052150008941305
- Ram, Y. and Elishakoff, I. (2004), "Reconstructing the cross-sectional area of an axially vibrating nonuniform rod from one of its mode shapes", P. Roy. Soc. Lond. A Mat., 460(2046), 1583-1596. https://doi.org/10.1098/rspa.2003.1214
- Rubio, W., Paulino, G. and Silva, E. (2011), "Tailoring vibration mode shapes using topology optimization and functionally graded material concepts", Smart Mater. Struct., 20(2), 025009. https://doi.org/10.1088/0964-1726/20/2/025009
- Saffari, H., Mohammadnejad, M. and Bagheripour, M. (2012), "Free vibration analysis of non-prismatic beams under variable axial forces", Struct. Eng. Mech., 43(5), 561-582. https://doi.org/10.12989/sem.2012.43.5.561
- Sarkar, K. and Ganguli, R. (2013), "Rotating beams and non-rotating beams with shared eigenpair for pinned-free boundary condition", Meccanica, 48(7), 1661-1676. https://doi.org/10.1007/s11012-013-9695-x
- Shahba, A. and Rajasekaran, S. (2011), "Free vibration and stability of tapered Euler-Bernoulli beams made of axially functionally graded materials", Appl. Math. Model., 36(7), 3094-3111.
- Song, Z., Li, W. and Liu, G. (2012), "Stability and non-stationary vibration analysis of beams subjected to periodic axial forces using discrete singular convolution", Struct. Eng. Mech., 44(4), 487-499. https://doi.org/10.12989/sem.2012.44.4.487
- Spletzer, M., Raman, A., Wu, A., Xu, X. and Reifenberger, R. (2006), "Ultrasensitive mass sensing using mode localization in coupled microcantilevers", Appl. Phys. Lett., 88(25), 254102-254102. https://doi.org/10.1063/1.2216889
- Sundaram, M.M. and Ananthasuresh, G. (2013), "A note on the inverse mode shape problem for bars, beams, and plates", Inverse Prob. Sci. Eng., 21(1), 1-16. https://doi.org/10.1080/17415977.2012.665905
- Takezawa, A. and Kitamura, M. (2013), "Sensitivity analysis and optimization of vibration modes in continuum systems", J. Sound Vib., 332(6), 1553-1566. https://doi.org/10.1016/j.jsv.2012.11.015
- Tufekci, E. and Yigit, O.O. (2012), "Effects of geometric parameters on in-plane vibrations of two-stepped circular beams", Struct. Eng. Mech., 42(2), 131-152. https://doi.org/10.12989/sem.2012.42.2.131
- Udupa, K.M. and Varadan, T.K. (1990). Hierarchical finite element method for rotating beams", J. Sound Vib., 138(3), 447-456. https://doi.org/10.1016/0022-460X(90)90598-T
- Vinod, K.G., Gopalakrishnan, S. and Ganguli, R. (2007), "Free vibration and wave propagation analysis of uniform and tapered rotating beams using spectrally formulated finite elements", Int. J. Solids Struct., 44(18), 5875-5893. https://doi.org/10.1016/j.ijsolstr.2007.02.002
Cited by
- Closed-form solutions for non-uniform axially loaded Rayleigh cantilever beams vol.60, pp.3, 2016, https://doi.org/10.12989/sem.2016.60.3.455