References
- An, D. W., Ko, H. H., Kim, J. H., Baek, J. G., and Kim, S. S. (2009), A Yields Prediction in the Semiconductor Manufacturing Process Using Stepwise Support Vector Machine, IE interfaces, 22(3), 252-262.
- Akbani, R., Kwek, S., and Japkowicz, N. (2004), Applying support vector machines to imbalanced datasets, In Machine Learning : ECML 2004(39-50). Springer Berlin Heidelberg.
- Bache, K. and Lichman, M. (2013), UCI Machine Learning Repository, http://archive.ics.uci.edu/ml, Irvine, CA : University of California, School of Information and Computer Science.
- Baek, D. H. and Han, C. H. (2003), Application of Data mining for improving and predicting yield in wafer fabrication system, Journal of Intelligence and Information Systems, 9(1), 157-177.
- Barandela, R., Sanchez, J. S., Garcia, V., and Rangel, E. (2003), Strategies for learning in class imbalance problems, Pattern Recognition, 36(3), 849-851. https://doi.org/10.1016/S0031-3203(02)00257-1
- Chang, C. C. and Lin, C. J. (2001b), Training n-support vector classifiers : theory and algorithms, Neural Computation, 13(9), 2119-2147. https://doi.org/10.1162/089976601750399335
- Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P. (2011), SMOTE : synthetic minority over-sampling technique, arXiv preprint arXiv : 1106.1813.
- Chyi, Y.-M. (2003), Classification analysis techniques for skewed class distribution problems, Master thesis, Department of Information Management, National Sun Yat-Sen University.
- Ciciani, B. and Iazeolla, G. (1991), A Markov chain-based yield formula for VLSI fault-tolerant chips, Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on, 10(2), 252-259. https://doi.org/10.1109/43.68412
- Cortes, C. and Vapnik, V. (1995), Support-vector networks, Machine learning, 20(3), 273-297.
- Cristianini, N. and Shawe-Taylor, J. (2000), An introduction to support vector machines and other kernel-based learning methods, Cambridge University press.
- Crosier, R. B. (1988), Multivariate generalizations of cumulative sum quality-control schemes, Technometrics, 30(3), 291-303. https://doi.org/10.1080/00401706.1988.10488402
- Goldberg, D. (1991), What every computer scientist should know about floating-point arithmetic, ACM Computing Surveys (CSUR), 23(1), 5-48. https://doi.org/10.1145/103162.103163
- Han, H. Y. (2009), Introduction of Patter Recognition, HANBIT Media, Seoul Korea.
- Hsu, C. W., Chang, C. C., and Lin, C. J. (2003), A practical guide to support vector classification.
- Jang, D. Y. and Bae, S. J., (2009), Hybrid Datamining Algorithm for Monitoring Input Variables in Semiconductor Manufacturing Process, IE Interfaces, 563-569.
- Kang, P. and Cho, S. (2006), EUS SVMs : Ensemble of under-sampled SVMs for data imbalance problems, In Neural Information Processing (837-846), Springer Berlin Heidelberg.
- Kim, J. W., Park, J. S., Kim, J. S., Kim, S. S., and Baek, J. G. (2014), Update Cycle Detection Method of Control Limits using Control Chart Performance Evaluation Model, Journal of the Korean Institute of Industrial Engineering, 40(1), 43-51. https://doi.org/10.7232/JKIIE.2014.40.1.043
- Kim, K., Hwang, C. G., and Lee, J. G. (1998), DRAM technology perspective for gigabit era. Electron Devices, IEEE Transactions on, 45(3), 598-608. https://doi.org/10.1109/16.661221
- Kim, M. J. (2012), Ensemble Learning with Support Vector Machines for Bond Rating, Journal of Intelligence and Information Systems, 18(2), 29-45.
- Kim, M. S. and Baek, J. G. (2011), Fail Prediction of DRAM Module Outgoing Quality Assurance Inspection using Ensemble Learning Algorithm, IE Interfaces, 25(2), 178-186. https://doi.org/10.7232/IEIF.2012.25.2.178
- Kim, S. C. (2010), A Joint Design of Rectifying Inspection Plans and Service Capacities for Multi-Products, Journal of the Korea Operations Research and Management Science Society, 35(1), 97-109.
- Kim, S. E., Kang, J. H., Park, J. H., Kim, S. S., and Baek, J. G. (2012), Fault Detection of Unbalanced Cycle Signal Data Using SOMbased Feature Signal Extraction Method, Journal of The Korea Society for Simulation, 21(2), 79-90.
- Kymal, C. and Patiyasevi, P. (2006), Semiconductor quality initiatives : How to maintain quality in this fast-changing industry, Quality Digest, 26(4), 43-48.
- Li, T. S. and Huang, C. L. (2009), Defect spatial pattern recognition using a hybrid SOM-SVM approach in semiconductor manufacturing, Expert Systems with Applications, 36(1), 374-385. https://doi.org/10.1016/j.eswa.2007.09.023
- Scholkopf, B. and Smola, A. J. (2002), Learning with Kernels : Support Vector Machines, Regularization, Optimization and Beyond, MIT press.
- Shin, H. and Cho, S. (2006), Response modeling with support vector machines, Expert Systems with Applications, 30(4), 746-760. https://doi.org/10.1016/j.eswa.2005.07.037
- Yan, R., Liu, Y., Jin, R., and Hauptmann, A. (2003), On predicting rare classes with SVM ensembles in scene classification. In Acoustics, Speech, and Signal Processing, 2003, Proceedings (ICASSP '03), 2003 IEEE International Conference on, 3, III-21.
- Yen, S. J. and Lee, Y. S. (2009), Cluster-based under-sampling approaches for imbalanced data distributions, Expert Systems with Applications, 36(3), 5718-5727. https://doi.org/10.1016/j.eswa.2008.06.108
- Wu, G. and Chang, E. Y. (2003), Adaptive feature-space conformal transformation for imbalanced-data learning, In ICML, 816-823.