References
- Anagnostopoulos, C.A. and Grammatikopoulos, I.N. (2011), "A new model for the prediction of secondary compression index of soft compressible soils", Bull. Eng. Geol. Environ., 70(3), 423-427. https://doi.org/10.1007/s10064-010-0323-x
- Asaoka, A., Nakano, M. and Noda, T. (2000), "Superloading yield surface concept for highly structured soil behavior", Soil. Found., 40(2), 99-110.
- Baudet, B. (2001), "Modelling effects of structure in soft natural clays", Ph.D. Dissertation, City University, London, UK.
- Baudet, B. and Stallebrass. S. (2004), "A constitutive model for structured clays", Geotechnique, 54(4), 269-278. https://doi.org/10.1680/geot.2004.54.4.269
- Burland, J.B. (1990), "On the compressibility and shear strength of natural clay", Geotechnique, 40(3), 329-378. https://doi.org/10.1680/geot.1990.40.3.329
- Burland, J.B., Rampello, S., Georgiannou, V.N. and Calabresi, G. (1996), "A laboratory study of the strength of four stiff clays", Geotechnique, 46(3), 491-514. https://doi.org/10.1680/geot.1996.46.3.491
- Callisto, L. and Rampello, S. (2004), "An interpretation of structural degradation for three natural clays", Can. Geotech. J., 41(3), 392-407. https://doi.org/10.1139/t03-099
- Casagrande, A. (1936), "The determination of the preconsolidation load and its practical significance", Proceedings of 1st International Conference on Soil Mechanics and Foundation Engineering, Boston, MA, USA.
- Chen, B. (2012), "Mechanical behavior of soft clay and its elastoplastic modeling", Ph.D. Dissertation, Shanghai University, Shanghai, China.
- Cotecchia, F. and Chandler, R.J. (2000), "A general framework for the mechanical behaviour of clays", Geotechnique, 50(4), 431-447 https://doi.org/10.1680/geot.2000.50.4.431
- Graham, J. and Li, E.C.C. (1985), "Comparison of natural and remolded plastic clay", J. Geotech. Eng. Div., ASCE, 111(7), 865-881. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:7(865)
- Hong, Z.S., Liu, S.Y., Shen, S.L. and Negami, T. (2006), "Comparison in undrained shear strength between undisturbed and remolded Ariake clays", J. Geotech. Geoenviron. Eng., ASCE, 132(2), 272-275. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:2(272)
- Hong, Z.S., Zeng, L.L., Cui, Y.J., Cai, Y.Q. and Lin, C. (2012), "Compression behaviour of natural and reconstituted clays", Geotechnique, 62(4), 291-301. https://doi.org/10.1680/geot.10.P.046
- Leroueil, S. and Vaughan, P.R. (1990), "The general and congruent effects of structure in natural soils and weak rocks", Geotechnique, 40(3), 467-488. https://doi.org/10.1680/geot.1990.40.3.467
- Liu, M.D. and Carter, J.P. (2002), "A structured cam clay model", Can. Geotech. J., 39(6), 1313-1332. https://doi.org/10.1139/t02-069
- Mesri, G. and Godlewski, P.M. (1977), "Time and stress-compressibility interrelationship", J. Geotech. Eng., ASCE, 103(5), 417-430.
- Mitchell, J.K. (1976), Fundamentals of Soil Behavior, Wiley, New York, NY, USA.
- Nagaraj, T.S., Murthy, B.R.S., Vatsala, A. and Joshi, R.C. (1990), "Analysis of compressibility of sensi- tive soils", J. Geotech. Eng., ASCE, 116(1), 105-118. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:1(105)
- Roscoe, K.H. and Burland, J.B. (1968), "On the generalised Stress-strain Behavior of "Wet" Clay", Engineering Plasticity, Cambridge University Press, Cambridge, UK.
- Roscoe, K.H., Schofield, A.N. and Thurairajah, A. (1963), "Yielding of clay in states wetter than critical", Geotechnique, 13(3), 211-240. https://doi.org/10.1680/geot.1963.13.3.211
- Rouainia, M., Muir wood, D. (2000), "A kinematic hardening constitutive model for natural clays with loss of structure", Geotechnique, 50(2), 153-164. https://doi.org/10.1680/geot.2000.50.2.153
- Suebsuk, J., Horpibulsuk, S. and Liu, M.D. (2011), "A critical state model for overconsolidated structured clays", Comput. Geotech., 38(5), 648-658. https://doi.org/10.1016/j.compgeo.2011.03.010
- Yao, Y.P., Hou, W. and Zhou, A.N. (2009), "UH Model: Three-dimensional unified hardening model for overconsolidated clays", Geotechnique, 59(5), 451- 469. https://doi.org/10.1680/geot.2007.00029
- Yao, Y.P., Gao, Z.W., Zhao, J.D. and Wan, Z. (2012), "Modified UH Model: Constitutive modeling of overconsolidated clays based on a parabolic Hvorslev Envelope", J. Geotech. Geo-environ. Eng., ASCE, 138(7), 860-868. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000649
Cited by
- Experimental study on the performance of compensation grouting in structured soil vol.10, pp.3, 2016, https://doi.org/10.12989/gae.2016.10.3.335
- Comparison of Hoek-Brown and Mohr-Coulomb failure criterion for deep open coal mine slope stability vol.60, pp.5, 2016, https://doi.org/10.12989/sem.2016.60.5.809
- Nonlinear Model of Soils Under Complex Stress Paths vol.36, pp.5, 2018, https://doi.org/10.1007/s10706-018-0522-y
- Simplified Constant Volume Simple Shear Tests on Clay vol.22, pp.8, 2018, https://doi.org/10.1007/s12205-018-0467-y
- Application of a modified structural clay model considering anisotropy to embankment behavior vol.13, pp.1, 2014, https://doi.org/10.12989/gae.2017.13.1.079
- Geotechnical characteristics and consolidation properties of Tianjin marine clay vol.16, pp.2, 2014, https://doi.org/10.12989/gae.2018.16.2.125
- Compression and shear responses of structured clays during subyielding vol.18, pp.2, 2014, https://doi.org/10.12989/gae.2019.18.2.121