DOI QR코드

DOI QR Code

Chromosome Redundancy and Tree Phenotype Variation in Autotetraploid Trifoliate Orange

동질 사배체 탱자에서 염색체 배가와 수체 표현형의 변이

  • Oh, Eun Ui (Facuity of Bioscience & Industry, Jeju National University) ;
  • Chae, Chi-Won (Citrus Research Station, National Institute of Horticultural & Herbal Science) ;
  • Kim, Sat-Byul (Facuity of Bioscience & Industry, Jeju National University) ;
  • Lu, Jian Liang (Department of Tea Sciences, Zhejiang University) ;
  • Yun, Su-Hyun (Citrus Research Station, National Institute of Horticultural & Herbal Science) ;
  • Koh, Sang-Wook (Citrus Research Station, National Institute of Horticultural & Herbal Science) ;
  • Song, Kwan Jeong (Facuity of Bioscience & Industry, Jeju National University)
  • 오은의 (제주대학교 생물산업학부) ;
  • 채치원 (국립원예특작과학원 감귤시험장) ;
  • 김샛별 (제주대학교 생물산업학부) ;
  • ;
  • 윤수현 (국립원예특작과학원 감귤시험장) ;
  • 고상욱 (국립원예특작과학원 감귤시험장) ;
  • 송관정 (제주대학교 생물산업학부)
  • Received : 2013.08.29
  • Accepted : 2014.02.05
  • Published : 2014.06.30

Abstract

The study was conducted to investigate the possibility that epigenetic DNA methylation causes tree phenotypic variation in autotetraploids through evaluating the phenotypic variation and DNA methylation in autotetraploids occurred spontaneously from diploid trifoliate orange. Chromosome analysis confirmed that fourteen trifoliate orange trees of selected by flow cytometry were tetraploids (2n = 4X = 36) without any aneuploids. Chromomycin A3 staining determined that these trees were all autotetraploid with doubled chromosome set. Tree phenotypes, such as tree height and width, branching number, length, and angle, internode length, and leaf characteristics, varied in the autotetraploids. Chlorophyll indices were diverse in the autotetraploids, but photosynthetic rates were not significantly different. In addition, a wide range of variation was observed in stomatal density and guard cell length. Analysis of global cytosine DNA methylation showed that there was a variation of the methylation level in autotetraploids. More than half of 14 autotetraploids had at least 2 times higher methylation level than diploid trifoliate orange. The results indicate that tree phenotypic variation in autotetraploids might be related to global DNA methylation for reducing gene redundancy.

이배체 탱자로부터 자연적으로 발생한 동질 사배체 탱자의 수체 형질 관련 표현형 및 유전체 메틸화 변이 정도를 분석하여 후성 유전의 하나인 유전체 메틸화가 동질 사배체의 표현형 변이의 요인으로 작용할 수 있음을 구명하고자 본 실험을 수행하였다. 이배체 탱자에서 유래된 14주의 사배체 탱자로부터 염색체를 분석하여 이수성이 없는 2n = 4X = 36 식물체로 확인하였다. CMA 핵형 분석 결과 염색체가 배가된 동질 사배체임을 확인할 수 있었다. 동질 사배체에서 수고, 수폭, 원가지 수, 원가지 길이, 분지 각도, 마디 길이, 잎의 특성 등 동질 사배체 수체 표현형에 있어서 상당한 변이가 나타남을 확인하였다. 또한 동질 사배체 광합성률에는 큰 차이는 없었지만, SPAD 값에 의한 엽록소 지수에 있어서도 표현형이 다양하게 나타나는 것을 알 수 있었다. 그 외에도 기공 밀도와 공변 세포 길이에 있어서 광범위하게 변이가 관찰되는 것을 알 수 있었다. Global cytosine DNA 메틸화를 분석한 결과 개체 간 메틸화 정도에 차이가 존재함을 알 수 있었다. 동질 사배체 탱자 14주의 절반이 이배체 탱자의 메틸화와 비교하였을 때 2배 이상으로 나타난 것을 확인하였다. 본 연구 결과 동질 사배체에서 나타나는 수체형질 변이가 gene redundency를 줄이기 위한 global cytosine DNA 메틸화와 관계될 수 있음을 확인하였다.

Keywords

References

  1. Allario, T., J. Brumos, J.M. Colmenero-Flores, F. Tadeo, Y. Froelicher, M. Talon, L. Navarro, P. Ollitrault, and R. Morillon. 2011. Large changes in anatomy and physiology between diploid Rangpur lime (Citrus limonia) and its autotetraploid are not associated with large es in leaf gene expression. J. Exp. Bot. 62:2507-2519. https://doi.org/10.1093/jxb/erq467
  2. Aleza, P., Y. Froelicher, S. Schwarz, M. Agusti, M. Hernandez, J. Juarez, F. Luro, R. Morillon, L. Navarro, and P. Ollitrault. 2011. Tetraploidization events by chromosome doubling of nucellar cells are frequent in apomictic citrus and are dependent on genotype and environment. Ann. Bot. 109:37-50.
  3. Aversano, R., I. Caruso, G. Aronne, V.D. Micco, N. Scognamiglio, and D. Carputo. 2013. Stochastic changes affect Solanum wild species following autopolyploidization. J. Exp. Bot. 64:625-635. https://doi.org/10.1093/jxb/ers357
  4. Barros e Silva, A.E., A. Marques, K.G.B. dos Santos, and M. Guerra. 2010. The evolution of CMA bands in Citrus and related genera. Chromosome Res. 18:503-514. https://doi.org/10.1007/s10577-010-9130-2
  5. Befu, M., A. Kitajima, Y.X. Lin, and K. Hasegawa. 2000. Classification of 'Tosa-Buntan' pummelo (Citrus grandis [L.] Osb.), 'Washington' navel orange (C. sinensis [L.] Osb.), and trifoliate orange (Poncirus trifoliata [L.] Raf.) chromosomes using young leaves. J. Jpn. Soc. Hort. Sci. 69:22-28. https://doi.org/10.2503/jjshs.69.22
  6. Cameron, J.W. and H.B. Frost. 1968. Genetics, breeding, and nucellar embryony, p. 325-370. In: W. Reuther, L.D. Batcherlor, and H.J. Webber (eds.). The citrus industry. Vol. 2. Univ. of California Press, Berkeley, CA, USA.
  7. Demeulemeester, M.A.C., N. Van Stallen, and M.P. De Proft. 1999. Degree of DNA methylation in chicory (Cichorium intybus L.): Influence of plant age and vernalization. Plant Sci. 142:101-108. https://doi.org/10.1016/S0168-9452(99)00010-2
  8. Dutt, M., M. Vasconcellos, K.J. Song, F.G. Gmitter, Jr., and J.W. Grosser. 2010. In vitro production of autotetraploid Ponkan mandarin (Citrus reticulate) using cell suspension culture. Euphytica 173:235-242. https://doi.org/10.1007/s10681-009-0098-y
  9. Ferrante, S.P., S. Lucretti, S. Reale, A. De Patrizio, L. Abbate, N. Tusa, and M.T. Scarano. 2009. Assessment of the origin of new citrus tetraploid hybrids (2n = 4x) by means of SSR markers and PCR based dosage effects. Euphytica 173:223-233.
  10. Food and Agricultural Organization (FAO). 2012. FAOSTAT. http://www.fao.org/.
  11. Grosser, J.W., E.S. Louzada, F.G. Gmitter, Jr., and J.L. Chandler. 1994. Somatic hybridization of complementary citrus rootstock: Five new hybrids. HortScience 29:812-813.
  12. Grosser, J.W., P. Ollitrault, and O. Olivares-fuster. 2000. Somatic hybridization in citrus: An effective tool to faciltate variety improvement. Biol. Plant. 36:434-449.
  13. Gunasekare, M.T.K. and M.A.B. Ranatunga. 2003. Polyploidy in tea (Camellia sinensis L.) and its application in tea breeding: A review. Sri Lanka J. Tea Sci. 68(2):14-26.
  14. Jia, F., Y.P. Fu, W.Q. Liu, Z. Du, and Y.D. Zhao. 2011. Quantitative determination of DNA Methylation in tobacco leaves by HPLC. Afr. J. Agri. Res. 6:1545-1548.
  15. Kaneyoshi, J., T. Furuta, M. Kurao, and S. Yamaguchi. 2008. Induced tetraploid by colchicine treatment in some monoembryonic citrus cultivars and triploidy production by using the tetraploid as seed parents. Hort. Res. 7:5-10. https://doi.org/10.2503/hrj.7.5
  16. Lavania, U., S. Srivastava, S. Lavania, S. Basu, N.K. Misra, and Y. Mukai. 2012. Autopolyploidy differentially influences body size in plants, but facilitates enhanced accumulation of secondary metabolites, causing increased cytosine methylation. Plant J. 71:539-549. https://doi.org/10.1111/j.1365-313X.2012.05006.x
  17. Medina-Urrutia, V., K.F.L. Madera, P. Serrano, G. Ananthakrishnan, J.W. Grosser, and W.W. Guo. 2004. New intergeneric somatic hybrids combining amblycarpa mandarin with six trifoloate/ trifoliate hybrid selections for lime rootstock improvement. HortScience 39:355-360.
  18. Miranda, M., F. Ikeda, T. Endo, T. Moriguchi, and M. Omura. 1997. Comparative analysis on the distribution of heterochromatin in Citrus, Poncirus, and Fortunella chromosomes. Chromosome Res. 5:86-92. https://doi.org/10.1023/A:1018409922843
  19. Ministry for Food, Agriculture, Forestry, and Fisheries (MFAFF). 2011. Food, agriculture, forestry and fisheries statistical yearbook. p. 118-119.
  20. Oiyama, I. and S. Kobayashi. 1991. Citrus pentaploids from small seeds of diploid ${\times}$ diploid crosses. HortScience 26:292-293.
  21. Osborn, T.C., J.C. Pires, J.A. Birchler, D.L. Auger, Z.J. Chen, H.S. Lee, L. Comai, A. Madlung, R.W. Doerge, V. Colot, and R.A. Martienssen. 2003. Understanding mechanisms of novel gene expression in polyploids. Trends Genet. 19:141-147. https://doi.org/10.1016/S0168-9525(03)00015-5
  22. Ranatunga, M.A.B. and M.T.K Gunasekare. 2003. A comparative assessment of some morphological and anatomical attributes to identify markers for screening polyploid genotypes of tea (Camellia sinensis L.). Sri Lanka J. Tea Sci. 68(1):12-19.
  23. Recupero, G.R., G. Russo, and S. Recupero. 2005. New promising citrus triploid hybrids selected from crosses between monoembryonic diploid female and tetraploid male parents. HortScience 40:516-520.
  24. Romero-Aranda, R., B.R. Bondada, J.P. Syvertsen, and J.W. Grosser. 1997. Leaf characteristics and net exchange of diploid and autotetraploid citrus. Ann. Bot. 79:153-160. https://doi.org/10.1006/anbo.1996.0326
  25. Semon, M. and K.H. Wolfe. 2007. Consequences of genome duplication. 2007. Curr. Opin. Genet. Dev. 17:505-512. https://doi.org/10.1016/j.gde.2007.09.007
  26. Song, K.J., S.B. Kim, J.H. Park, E.U. Oh, K.G. Lee, D.W. Kim, J.H. Kang, J.S. Kim, J.H. Oh, and F.G. Gmirrer. 2011. Frequency and growth characteristics of polyploids occurred spontaneously in some mandarin hybrid. Kor. J. Hort. Sci. Technol. 29:617-622.
  27. Usman, M., T. Saeed, M.M. Khan, and B. Fatima. 2006. Occurrence of spontaneous polyploids in Citrus. Hort. Sci. (Prague) 33:124-129.
  28. Wakana, A., N. Hanada, S.M. Park, I. Fukudome, and K. Kajiwara. 2005. Production of tetraploid forms of acid citrus cultivars by top grafting of shoots with sprouting axially buds treated with colchicines. J. Fac. Agr. Kyushu Univ. 50:93-102.
  29. Wang, C.G., H. Li, Z.Y. Xue, C.B. Chen, Y. Gu, D.L. Sun, and W.Q. Song. 2009. Marker-based analysis of genome structure and DNA methylation in a watermelon (Citrullus lanatus) ploidy series. Bot. Stud. 50:389-402.
  30. Yamamoto, M., A.A. Abkenar, R. Matsumoto, H. Nesumi, T. Yoshida, T. Kuniga, T. Kubo, and S. Tominaga. 2007. CMA banding patterns of chromosome in major Citrus species. J. Jpn. Soc. Hort. Sci. 76:36-40. https://doi.org/10.2503/jjshs.76.36
  31. Yamamoto, M. and S. Tominaga. 2004. CMA banding pattern of chromosomes is useful for the identification of chromosome doubling in haploid citrus. Breed. Sci. 54:351-354. https://doi.org/10.1270/jsbbs.54.351
  32. Ye, Y.M., J. Tong, X.P. Shi, W. Yuan, and G.R. Li. 2010. Morphological and cytological studies of diploid and colchicineinduced tetraploid lines of crape myrtle (Lagerstroemia indica L.). Sci. Hortic. 124: 95-101. https://doi.org/10.1016/j.scienta.2009.12.016
  33. Yu, Z, G. Haberer, M. Matthes, T. Rattei, K.F.X. Mayer, A. Gierl, and R.A. Torres-Ruiz. 2010. Proc. Natl. Acad. Sci. USA 107:17809-17814. https://doi.org/10.1073/pnas.1000852107
  34. Zhu, S.P., J.-K. Song, Z.-Y. Hu, B. Tan, Z.-Z. Xie, H.-L. Yi, and X.-X. Deng. 2009. Ploidy variation and genetic composition of open-pollinated triploid citrus progenoies. Bot. Studies 50:319-324.

Cited by

  1. Defoliation time influences vine regrowth, off-season flowering, and fruit quality in ‘Jecy Gold’ kiwifruit vines vol.57, pp.3, 2016, https://doi.org/10.1007/s13580-016-0029-5
  2. DNA methylation levels in different tissues in tea plant via an optimized HPLC method vol.60, pp.6, 2014, https://doi.org/10.1007/s13580-019-00180-2