DOI QR코드

DOI QR Code

Changes in Organic and Inorganic Nutrients in Terminal Shoots of 'Fuyu' Persimmon during Spring Growth

감나무 정단신초의 봄 생장 동안 유기 및 무기 양분의 변화

  • Yoon, Young-Whang (Sweet Persimmon Research Institute, Gyeongsangnam-do Agricultural Research & Extension Services) ;
  • Choi, Seong-Tae (Sweet Persimmon Research Institute, Gyeongsangnam-do Agricultural Research & Extension Services) ;
  • Park, Doo-Sang (Sweet Persimmon Research Institute, Gyeongsangnam-do Agricultural Research & Extension Services) ;
  • Rho, Chi-Woong (Research and Development Bureau, Gyeongsangnam-do Agricultural Research & Extension Services) ;
  • Kim, Dae-Ho (Research and Development Bureau, Gyeongsangnam-do Agricultural Research & Extension Services) ;
  • Kang, Seong-Mo (Korean Society for Persimmon Science and Industry)
  • 윤영황 (경상남도농업기술원 단감연구소) ;
  • 최성태 (경상남도농업기술원 단감연구소) ;
  • 박두상 (경상남도농업기술원 단감연구소) ;
  • 노치웅 (경상남도농업기술원 연구개발국) ;
  • 김대호 (경상남도농업기술원 연구개발국) ;
  • 강성모 (한국감연구회)
  • Received : 2013.07.03
  • Accepted : 2014.02.05
  • Published : 2014.06.30

Abstract

To understand changes in composition and distribution of nutrients during early shoot growth of persimmon, organic compounds and inorganic elements of terminal shoots were analyzed for about 40 days from the time of foliation. Sample shoots were collected from mature 'Fuyu' trees for this three-year experiment and they were divided to stem, leaves, and the fruits including flower buds at the earliest stage. During shoot growth, concentration of soluble sugars increased in both leaves and fruits, but that of starch increased only in leaves. Those of amino acids tended to decrease in all the parts but there was no consistent change in proteins. As shoots grew, contents of all the organic compounds in a shoot increased, and they were especially higher in May leaves accounting for more than 60% of the shoot total for each nutrient. Along with shoot growth, concentrations of N and P gradually decreased in all three parts, while K decreased only in stem. However, those of Ca and Mg did not show notable changes in all the parts with wide variations depending on the year. Due to the quantitative increase in growth, contents of inorganic elements in a shoot increased in all the parts and the leaves accounted for 54-82% of the shoot total. At the cessation time of extension growth, a shoot contained 526-768 mg of soluble sugars, 245-844 mg of starch, 26-31 mg of amino acids, and 66-103 mg of proteins for three years. On the other hand, a shoot contained 203-388 mg of K, the greatest among the inorganic elements, followed by 132-159 mg of N. Changes of the nutrients in a shoot were much greater during the earlier stage of growth after foliation than during the later stage toward growth cessation, suggesting the importance of mobilizing reserve nutrients for the early growth of the shoots. The results of this study also suggested that the rate of nutrient changes, especially during the earlier stage of shoot growth, could be affected by environmental and cultural conditions.

감나무 신초의 초기 생장기 동안 양분 조성 및 분배 양상을 파악하기 위하여 전엽 후부터 약 40일 동안 정단신초의 유기화합물과 무기원소를 조사하였다. 성목 '부유'를 3년간 시험재료로 사용하였으며, 신초는 줄기, 잎, 과실(화뢰 포함)로 나누어 분석하였다. 신초생장기에 가용성당 농도는 잎과 과실에서, 전분은 잎에서만 증가하였다. 아미노산 농도는 세 부위 모두에서 감소하는 경향이었으나 단백질은 변화가 뚜렷하지 않았다. 신초당 이들 유기화합물의 함량은 신초생장과 함께 증가하였는데, 줄기나 과실보다 잎에서 월등히 많아 5월 동안 각 양분 총량의 60% 이상을 차지하였다. 생장이 진행됨에 따라 N과 P 농도는 세 부위에서 점진적으로 낮아진 반면, K 농도는 줄기에서만 감소하였다. Ca와 Mg농도는 부위별로 경시적인 변화가 뚜렷하지 않고 해에 따른 차이도 컸다. 각 무기원소의 단위 신초당 함량은 생장량의 증가로 모든 부위에서 증가하였는데, 잎이 5월 중순 이후 각 무기원소 함량의 54-82%를 차지하였다. 신초의 길이 생장이 완료된 때의 단위 신초당 가용성당과 전분 함량은 3년동안 각각 526-768과 245-844mg의 범위에 있었으며, 아미노산과 단백질 함량은 각각 26-31과 66-103mg이었다. 신초당 무기원소 함량은 K가 203-388mg으로 가장 많았고 다음으로 N이 132-159mg이었다. 발아 직후의 생장 전반부와 생장이 정지되는 시기에 가까운 후반부의 각 양분 함량의 상대적인 변화율을 조사한 결과 모두 전반부의 값이 후반부 값보다 월등히 높아 생장 초기에 양분의 증가속도가 월등하게 높음을 나타냈다. 초기에 변화율이 이렇게 높은 것은 저장양분의 공급 때문이며, 연차간 차이는 기상이나 재배 조건에 따른 초기 변화율의 차이와 깊은 관련이 있을 것으로 판단되었다.

Keywords

References

  1. Bradford, M.M. 1976. A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  2. Choi, S.T., S.M. Kang, D.S. Park, Y.W. Yoon, and G.H. Ahn. 2005. Tree responses of 'Fuyu' persimmon to different degrees of early defoliation on fruit characteristics at harvest and tree development the next season. J. Kor. Soc. Hort. Sci. 46:136-139.
  3. Choi, S.T., D.S. Park, S.M. Kang, and S.J. Park. 2011. Use of a chlorophyll meter to diagnose nitrogen status of 'Fuyu' persimmon leaves. HortScience 46:821-824.
  4. Clark, C.J. and G.S. Smith. 1990. Seasonal changes in the mineral nutrient content of persimmon leaves. Sci. Hort. 42:85-97. https://doi.org/10.1016/0304-4238(90)90150-D
  5. Davis, J.T. and D. Sparks. 1974. Assimilation and translocation patterns of carbon-14 in the shoots of fruiting pecan trees Carya illinoensis Koch. J. Amer. Soc. Hort. Sci. 99:468-480.
  6. Fukuda, A. and I. Kuroi. 1949. Seasonal changes of starch content in the shoots of some deciduous fruit trees (grape, peach, pear and persimmon). J. Japan. Soc. Hort. Sci. 18:150-154. https://doi.org/10.2503/jjshs.18.150
  7. George, A.P., R.J. Collins, and T.S. Rasmussen. 1994. Phenological cycling of non-astringent persimmon in subtropical Australia. J. Hort. Sci. 69:937-946.
  8. George, A.P., A.D. Mowat, and R.J. Collins. 1997. Seasonal changes in photosynthesis of the non-astringent persimmon cultivar 'Fuyu' in subtropical Australia. Acta Hort. 436:339-343.
  9. George, A.P., R.J. Nissen, R.J. Collins, and G.F. Haydon. 1995. Seasonal leaf nutrient patterns and standard leaf nutrient levels for non-astringent persimmon in subtropical Australia. J. Hort. Sci. 70:807-816.
  10. Hale, C.R. and R.J. Weaver. 1962. The effect of developmental stage on direction of translocation of photosynthate in Vitis vinifera. Hilgardia 33:89-131. https://doi.org/10.3733/hilg.v33n03p039
  11. Hirata, N., S. Hayashi, and H. Kurooka. 1974. Physiological studies of developing and ripening fruits of the Japanese persimmon. II. The effects of degrees or times of artificial defoliation during last fall on cell division and cell enlargement during the development of fruit, fruit size and fruit quality at maturity. Bull. Fac. Agr. Tottori Univ. 26:15-27.
  12. Kim, Y.K., C.S. Lim, S.M. Kang, and J.L. Cho. 2009. Root storage of nitrogen applied in autumn and its remobilization to new growth in spring of persimmon trees (Diospyros kaki cv. 'Fuyu'). Sci. Hort. 119:193-196. https://doi.org/10.1016/j.scienta.2008.07.013
  13. Loescher, W.H., T. McCamant, and J.D. Keller. 1990. Carbohydrate reserves, translocation, and storage in woody plant roots. HortScience 25:274-281.
  14. McCready, R.M., J. Guggolz, V. Silviera, and H.S. Owens. 1950. Determination of starch and amylose in vegetables. Anal. Chem. 22:1156-1158. https://doi.org/10.1021/ac60045a016
  15. Mowat, A.D. and A.P. George. 1994. Persimmon, p. 209-232. In: B. Schaffer and P.C. Andersen (eds.). Handbook of environmental physiology of fruit crops. Vol. I. Temperate crops. CRC Press, Boca Raton, Fla.
  16. Nakamura, S. 1935. Studies on the root activities of some deciduous fruit J. Japan. Soc. Hort. Sci. 6:305-317. https://doi.org/10.2503/jjshs.6.305
  17. National Institute of Agricultural Science and Technology (NIAST). 2000. Analytical methods of soil and plant. NIAST, RDA, Suwon, Korea.
  18. Nii, N. 1980. Current shoot and growth in Japanese persimmon, Diospyros kaki cv. 'Fuyu', in relation to the development of the tissue system in the leaf. J. Japan. Soc. Hort. Sci. 49:149-159. https://doi.org/10.2503/jjshs.49.149
  19. O'Kennedy, B.T. and J.S. Titus. 1979. Isolation and mobilization of storage proteins from apple shoot bark. Physiol. Plant. 45:419-424. https://doi.org/10.1111/j.1399-3054.1979.tb02606.x
  20. Oliveira, C.M. and A. Priestley. 1988. Carbohydrate reserves in deciduous fruit trees. Hort. Rev. 10:403-430.
  21. Park, S.J. 2002. Changes of inorganic elements in senescing Fuyu leaves at two locations differing the time of abscission. Kor. J. Hort. Sci. Technol. 20:106-109.
  22. Park, S.J. and Y.K. Kim. 2011. Defruiting effect of young Fuyu persimmon (Diospyros kaki) on assimilate partitioning in-season and early growth the next season. Sci. Hort. 130:197-202. https://doi.org/10.1016/j.scienta.2011.06.037
  23. Park, S.J., Y.G. Kim, J.C. Kim, J.L. Cho, and Y.C. Lee. 2003. Changes in organic nutrients of senescing Fuyu leaves at two locations differing in the time of abscission. Acta Hort. 601:73-78.
  24. Quinland, J.D. and R.J. Weaver. 1969. Influence of benzyladenine, leaf darkening and ringing on movement of $^{14}C$-labeled assimilates into expanded leaves of Vitis vinifera L. Plant Physiol. 44:1247-1252. https://doi.org/10.1104/pp.44.9.1247
  25. Stassen, P.J.C., M.M. Du Preez, and J.D. Stadler. 1983. Reserves in full-bearing peach trees. Macro-element reserves and their role in peach trees. Decid. Fruit Grow. 33:200-206.
  26. Tagliavini, M., M. Quartieri, and P. Millard. 1997. Remobilised nitrogen and root uptake of nitrate for spring leaf growth, flowers and developing fruits of pear (Pyrus communis L.) trees. Plant Soil 195:137-142. https://doi.org/10.1023/A:1004207918453
  27. Titus, J.S. and S.M. Kang. 1982. Nitrogen metabolism, translocation and recycling in apple trees. Hort. Rev. 4:204-246.
  28. Yemm, E.W. and E.C. Cocking. 1955. The determination of amino acids with ninhydrin. Analyst 80:209-213. https://doi.org/10.1039/an9558000209
  29. Yoon, Y.W., S.T. Choi, D.S. Park, C.W. Rho, and S.M. Kang. 2012. Analyses for early growth of terminal shoots in persimmon. Kor. J. Hort. Sci. Technol. 30:385-391. https://doi.org/10.7235/hort.2012.12031

Cited by

  1. Bioactive extracts from persimmon waste: influence of extraction conditions and ripeness vol.12, pp.16, 2014, https://doi.org/10.1039/d1fo00457c