DOI QR코드

DOI QR Code

Bacterial Contamination and Antimicrobial Resistance of the Surrounding Environment Influencing Health

건강에 영향을 주는 주변환경의 미생물 오염 실태 및 항생제 내성

  • Received : 2014.03.28
  • Accepted : 2014.04.21
  • Published : 2014.06.30

Abstract

Community-acquired antimicrobial resistant bacteria are an emerging problem world-wide. In Korea, resistant bacteria are more prevalent than in other industrialized countries. The aim of this study was to investigate the isolation frequency of methicillin-resistant staphylococci (MRS), Pseudomonas, and Enterobacteriaceae from surrounding environment (home, colleges, public transportation system and possessions) in Seoul, and to examine the level of drug resistance to 13 antimicrobial agents, which are in wide spread clinical use in Korea, as well as new agent, tigecycline in Enterobacteriaceae isolates. Of total 239 samples, 18 (7.5%) MRS, 10 (4.2%) Pseudomonas, and 30 (12.6%) Entarobacteriaceae were isolated. A total of 5 (2.1%) methicillin-resistant S. aureus (MRSA) were detected in home (2 samples), colleges (1 sample), and et cetera (2 sample). A total of 5 (2.1%) Escherichia coli were detected in in home (1 samples), public transportations (3 sample), and et cetera (1 sample). Resistance to cephalosporins, fluoroquinolones, carbapenems, ${\beta}$-lactams, tetracyclines, and aminoglycosides was found in 71.9%, 71.9%, 68.8%, 68.8%, 50.0%, and 25.0% of 32 Enterobacteriaceae isolates, respectively. Also, resistance rate to trimethoprim/sulfamethoxazole of the isolates was a 43.8%. Moreover, 59.4% of the isolates were resistant to new agent, tigecycline and resistance to all agents tested was observed in 3 isolates. Five E. coli isolates were resistant to most of the agents tested, but some of them were susceptible to ciprofloxacin and gentamicin. This study can serve as a data point for future comparisons of possible changes in antibiotic resistance levels in surrounding environment. And multilateral strategies for preventing the incidence and spread of antibiotic resistance are needed.

지역사회 획득 항생제 내성 세균은 전 세계에서 새로운 문제로 대두되고 있다. 특히 한국에서 항생제 내성 세균의 발생빈도는 다른 선진국들보다 높다. 본 연구에서는 서울지역의 다양한 주변 환경(가정집, 대학교, 대중교통, 소지품 등)으로부터 methicillin-resistant staphylococci (MRS), Pseudomonas, 그리고 대장균군(Enterobacteriaceae)의 분리율을 조사하였으며, 검출된 대장균군(Enterobacteriaceae)을 대상으로 신 항생제를 포함한 한국의 임상에서 널리 쓰이는 13종의 항생제에 대한 내성정도를 파악하였다. 총 239건의 시료에서 18건(7.5%)의 MRS, 10건(4.2%)의 Pseudomonas, 그리고 30건(12.6%)의 대장균군(Enterobacteriaceae)이 분리되었다. 또한 가정집에서 2건, 대학교에서 1건, 그리고 기타(공원 의자와 빌딩 문손잡이)에서 2건, 총 5건(2.1%)의 시료에서 메티실린 내성 황색포도상구균(methicillin-resistant Staphylococcus aureus, MRSA)이 검출되었으며, 대장균(Escherichia coli)은 가정에서 1건, 대중교통에서 3건, 그리고 기타(음식점 정수기 본체 상단)에서 1건, 총 5건(2.1%)의 시료에서 검출되었다. 분리된 대장균군(Enterobacteriaceae) 32균주에 대한 항생제 내성률은, cephalosporin 계열과 fluoroquinolone 계열에서 각각 71.9%, carbapenem 계열과 ${\beta}$-lactam 계열에서 각각 68.8%까지 나타났으며, tetracycline 계열과 aminoglycoside 계열에서는 각각 50.0%와 25.0%까지 내성을 나타냈다. 또한 trimethoprim/ sulfamethoxazole에 대한 내성률은 43.8%로 나타났다. 심지어 신 항생제인 tigecycline에 대한 내성률도 59.4%로 나타났으며, 시험한 모든 항생제에 내성을 나타내는 균주도 3건이나 검출되었다. 그리고 분리된 총 5균주의 대장균(E. coli)은 대부분의 시험 항생제에 내성을 나타냈으나, 일부는 ciprofloxacin과 gentamicin에 감수성을 보였다. 본 연구는 향후 주변환경의 항생제 내성 수준의 변화를 비교하기 위한 기초 자료를 제공하며, 이들 내성균의 발생과 확산 방지에 대한 다각적인 노력과 대책 마련이 필요함을 보여준다.

Keywords

References

  1. Chong, Y. and Lee, K. 2000. Present situation of antimicrobial resistance in Korea. J. Infect. Chemother. 6, 189-195. https://doi.org/10.1007/s101560070001
  2. Clinical and Laboratory Standards Institute (CLSI). 2012. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; Approved standard, 9th ed. CLSI document M07-A79, CLSI, Wayne, PA, USA.
  3. Dixon, B. 2000. Antibiotics as growth promotors: risks and alternatives. ASM News 66, 264-265.
  4. Fridkin, S.K., Hageman, J.C., Morrison, M., Sanza, L.T., Como-Sabetti, K., Jernigan, J.A., Hariman, K., Harrison, L.H., Lynfield, R., Farley, M.M. 2005. Methicillin-resistant Staphylococcus aureus disease in three communities. N. Engl. J. Med. 352, 1436-1444. https://doi.org/10.1056/NEJMoa043252
  5. Garau, J. 2008. Other antimicrobials of interest in the era of extended-spectrum beta-lactamases: fosfomycin, nitrofurantoin and tigecycline. Clin. Microbiol. Infect. 14, 198-202. https://doi.org/10.1111/j.1469-0691.2007.01852.x
  6. Heinemann, J.A., Ankenbauer, R.G., and Amabile-Cuevasc, C.F. 2000. Do antibiotics maintain antibiotic resistance? Drug Discov. Today 5, 195-204. https://doi.org/10.1016/S1359-6446(00)01483-5
  7. Kang, C.I. 2011. Therapeutic strategy for the management of multidrug-resistant Gram-negative bacterial infections. J. Kor. Med. Assoc. 54, 325-331. https://doi.org/10.5124/jkma.2011.54.3.325
  8. Kang, C.I. 2013. What's new in the management of bacterial infections in the era of multidrug-resistant bacteria? J. Kor. Soc. Transplant. 27, 81-86. https://doi.org/10.4285/jkstn.2013.27.3.81
  9. Kang, C.I. and Song, J.H. 2013. Antimicrobial resistance in Asia: current epidemiology and clinical implications. Infect. Chemother. 45, 22-31. https://doi.org/10.3947/ic.2013.45.1.22
  10. Kim, E.S., Song, J.S., Lee, H.J., Choe, P.G., Park, K.H., Cho, J.H., Park, W.B., Kim, S.H., Bang, J.H., Kim, D.M., and et al. 2007. A survey of community-associated methicillin-resistant Staphylococcus aureus in Korea. J. Antimicrob. Chemother. 60, 1108-1114. https://doi.org/10.1093/jac/dkm309
  11. Lee, K., Lim, C.H., Cho, J.H., Lee, W.G., Uh, Y., Kim, H.J., Yong, D., and Chong, Y. 2006. High prevalence of ceftazidime-resistant Klebsiella pneumonia and increase of imipenem-resistant Pseudomonas aeruginosa and Acinetobacter spp. in Korea: a KONSAR program in 2004. Yonsei Med. J. 47, 634-645. https://doi.org/10.3349/ymj.2006.47.5.634
  12. Lee, H.J., Yoon, H.B., Han, S.S., Cha, R., Oh, K.H., Joo, K.W., Park, S.W., Lim, C.S., and Oh, Y.K. 2008. Causative organisms and antibiotics sensitivity in community acquired acute oyelonephritis. Kor. J. Nephrol. 27, 688-695.
  13. Martinez, J.L. 2009. Environmental pollution by antibiotics and by antibiotic resistance determinants. Environ. Pollut. 157, 2893-2902. https://doi.org/10.1016/j.envpol.2009.05.051
  14. McGowan, Jr. J.E. 2001. Economic impact of antimicrobial resistance. Emerg. Infect. Dis. 7, 286-292. https://doi.org/10.3201/eid0702.010228
  15. Paul, M., Shani, V., Muchtar, E., Kariv, G., Robenshtok, E., and Leibovici, L. 2010. Systematic review and meta-analysis of the efficacy of appropriate empiric antibiotic therapy for sepsis. Antimicrob. Agents Chemother. 54, 4851-4863. https://doi.org/10.1128/AAC.00627-10
  16. Price, J., Ekleberry, A., and Grover, A. 1999. Evaluation of clinical practice guidelines on outcome of infection in patients in the surgical intensive care unit. Crit. Care Med. 27, 2118-2124. https://doi.org/10.1097/00003246-199910000-00007
  17. Raji, M.A., Jamal, W., Ojemhen, O., and Rotimi, V.O. 2013. Point-surveillance of antibiotic resistance in Enterobacteriaceae isolates from patients in a Lagos Teaching Hospital, Nigeria. J. Infect. Public Health 6, 431-437. https://doi.org/10.1016/j.jiph.2013.05.002
  18. Rodriguez-Bano, J. and Pascual, A. 2008. Clinical significance of extended-spectrum beta-lactamases. Expert. Rev. Anti. Infect. Ther. 6, 671-683. https://doi.org/10.1586/14787210.6.5.671
  19. Song, J.H. 2009. Current status and futures strategies of antimicrobial resistance in Korea. Kor. J. Med. 77, 143-151.
  20. Spellberg, B., Blaser, M., Guidos, R.J., Boucher, H.W., Bradley, J.S., Eisenstein, B.I., Gerding, D., Lynfield, R., Reller, L.B., Rex, J., and et al. 2011. Combating antimicrobial resistance: policy recommendations to save lives. Clin. Infect. Dis. 52, S397-S428. https://doi.org/10.1093/cid/cir153
  21. Suarez, C., Pena, C., Tubau, F., Gavalda, L., Manzur, A., Dominguez, M.A., Pujol, M., Gudiol, F., and Ariza, J. 2009. Clinical impact of imipenem-resistant Pseudomonas aeruginosa bloodstream infections.J. Infect. 58, 285-290. https://doi.org/10.1016/j.jinf.2009.02.010
  22. Tasina, E., Haidich, A.B., Kokkali, S., and Arvanitidou, M. 2011. Efficacy and safety of tigecycline for the treatment of infectious diseases: a meta-analysis. Lancet Infect. Dis. 11, 834-844. https://doi.org/10.1016/S1473-3099(11)70177-3
  23. van Duin, D., Kaye K.S., Neuner, E.A., and Bonomo, R.A. 2013. Carbapenem-resistant Enterobacteriaceae: a review of treatment and outcomes. Diagn. Microbiol. Infect. Dis. 75, 115-120. https://doi.org/10.1016/j.diagmicrobio.2012.11.009
  24. Wellington, E.M., Boxall, A.B., Cross, P., Feil, E.J., Gaze, W.H., Hawkey, P.M., Johnson-Rollings, A.S., Jones, D.L., Lee, N.M., Otten, W., and et al. 2013. The role of the natural environment in the emergence of antibiotic resistance in Gram-negative bacteria. Lancet Infect. Dis. 13, 155-165. https://doi.org/10.1016/S1473-3099(12)70317-1
  25. Yoo, Y.A., Kim, M.S., Kim, K.S., Park, S.H., and Jung, S.K. 2010. Antimicrobial resistance and implicated genes of E. coli isolated from commercial and cooked foods in Seoul. J. Fd. Hyg. Safety 25, 220-225.

Cited by

  1. 천안 천호지에서 분리한 대장균의 항생제 내성에 관한 융합연구 vol.8, pp.11, 2014, https://doi.org/10.15207/jkcs.2017.8.11.141
  2. 창원근교에서의 ampicillin 내성세균의 분리 및 동정 vol.28, pp.12, 2014, https://doi.org/10.5352/jls.2018.28.12.1529