DOI QR코드

DOI QR Code

Classification of Parkinson's Disease Using Defuzzification-Based Instance Selection

역퍼지화 기반의 인스턴스 선택을 이용한 파킨슨병 분류

  • Lee, Sang-Hong (Department of Computer Science & Engineering, Anyang University)
  • Received : 2014.03.14
  • Accepted : 2014.04.16
  • Published : 2014.06.30

Abstract

This study proposed new instance selection using neural network with weighted fuzzy membership functions(NEWFM) based on Takagi-Sugeno(T-S) fuzzy model to improve the classification performance. The proposed instance selection adopted weighted average defuzzification of the T-S fuzzy model and an interval selection, same as the confidence interval in a normal distribution used in statistics. In order to evaluate the classification performance of the proposed instance selection, the results were compared with depending on whether to use instance selection from the case study. The classification performances of depending on whether to use instance selection show 77.33% and 78.19%, respectively. Also, to show the difference between the classification performance of depending on whether to use instance selection, a statistics methodology, McNemar test, was used. The test results showed that the instance selection was superior to no instance selection as the significance level was lower than 0.05.

본 논문에서는 분류 성능을 향상하기 위해서 Takagi-Sugeno(T-S) 퍼지 모델 기반의 가중 퍼지소속함수 기반 신경망(Neural Network with Weighted Fuzzy Membership Functions; NEWFM)을 이용한 새로운 인스턴스 선택을 제안하였다. 제안하는 인스턴스 선택은 T-S 퍼지 모델에서의 가중 평균 역퍼지화와 통계학에서 사용하는 정규분포의 신뢰구간과 같은 구간 선택을 이용하여 인스턴스를 선택하였다. 제안하는 인스턴스 선택의 분류 성능을 평가하기 위해서 인스턴스 사용 전/후에 따라서 분류 성능을 비교하였다. 인스턴스 사용 전/후에 따른 분류 성능은 각각 77.33%, 78.19%로 나타났다. 또한 인스턴스 사용 전/후에 따른 분류 성능 간에 차이점을 보여주기 위해서 통계학에서 사용하는 맥니마 검정을 사용하였다. 맥니마 검정의 결과로 유의 확률이 0.05보다 적게 나오므로 인스턴스 선택의 분류 성능이 인스턴스 선택을 하지 않는 경우의 분류 성능보다 우수함을 확인 할 수가 있었다.

Keywords

References

  1. Bell, G., Hey, T., and Szalay, A., "Beyond the data deluge," Science 323, pp.1297-1298, 2009. https://doi.org/10.1126/science.1170411
  2. Yi Hong, Sam Kwong, Yuchou Chang, and Qingsheng Ren, "Unsupervised feature selection using clustering ensembles and population based incremental learning algorithm," Pattern Recognition, Vol.41, pp.2742-2756, 2008. https://doi.org/10.1016/j.patcog.2008.03.007
  3. Minh Hoai Nguyen and Fernando de la Torre, "Optimal feature selection for support vector machines," Pattern Recognition, Vol.43, pp.584-591, 2010. https://doi.org/10.1016/j.patcog.2009.09.003
  4. Jose Martinez Sotoca and Filiberto Pla, "Supervised feature selection by clustering using conditional mutual information-baseddistances," Pattern Recognition, Vol.43, pp.2068-2081, 2010. https://doi.org/10.1016/j.patcog.2009.12.013
  5. Patricia E.N. Lutu and Andries P. Engelbrecht, "A decision rule-based method for feature selection in predictive data mining," Expert Systems with Applications, Vol.37, pp.602-609, 2010. https://doi.org/10.1016/j.eswa.2009.06.031
  6. S-M Zhou and J. Q. Gan, "Constructing L2-SVM-Based Fuzzy Classifiers in High-Dimensional Space With Automatic Model Selection and Fuzzy Rule Ranking," IEEE Trans. on Fuzzy Systems, Vol. 15, No. 3, pp. 398-409, 2007. https://doi.org/10.1109/TFUZZ.2006.882464
  7. Kudo, M. and Sklansky, J., "Comparison of algorithms that select features for pattern classifiers," Pattern Recognition 33, pp.25-41, 2000. https://doi.org/10.1016/S0031-3203(99)00041-2
  8. Kuncheva, L.I., "Editing for the k-nearest neighbors rule by a genetic algorithm," Pattern Recognition Letters 16, pp.809-814, 1995. https://doi.org/10.1016/0167-8655(95)00047-K
  9. Joon S. Lim, "Finding Features for Real-Time Premature Ventricular Contraction Detection Using a Fuzzy Neural Network System," IEEE TRANSACTIONS ON NEURAL NETWORKS, vol.20, Issue 3, pp.522-527, 2009. https://doi.org/10.1109/TNN.2008.2012031
  10. Sang-Hong Lee and Joon S. Lim, "Forecasting KOSPI based on a neural network with weighted fuzzy membership functions," Expert Systems with Applications, vol.38, Issue 4, pp.4259-4263, 2011. https://doi.org/10.1016/j.eswa.2010.09.093
  11. Sang-Hong Lee and Joon S. Lim, "Parkinson's disease classification using gait characteristics and waveletbased feature extraction," Expert Systems with Applications, vol.39, Issue 8, pp.7338-7344, 2012. https://doi.org/10.1016/j.eswa.2012.01.084
  12. Takagi T. and Sugeno M., Fuzzy identification of system and its applications to modeling and control, IEEE Trans. Syst., Man, Cybern., SMC-15, (1985), 116-132. https://doi.org/10.1109/TSMC.1985.6313399
  13. Koller, W.C., et al., "Falls and Parkinson's disease," Clin Neuropharmacol, vol.12, pp.98-105, 1989. https://doi.org/10.1097/00002826-198904000-00003
  14. C.-N. Lee, G.-M. Eom, K.-W. Park, S.-B. Koh, B.-J. Kim, K.-M. Oh,H.-J. Kim, and D.-H. Lee, "Dynamic Foot Pressure Measurement in Parkinson's Disease with Foot Scan System," J Korean Neurol Assoc, vol.25, No.2, pp.172-179, 2007.
  15. J.-W. Kim and G.-M Eom, "Comparison of the Total Stance Time And the Phase Ratio in Parkinson's Disease Patients And Normal Subjects," Journal of Biomedical Engineering Research, vol.27, No.6, pp.351-356, 2006.
  16. Sang-Hong Lee, Joon S. Lim, and Dong-Kun Shin, "Features Extraction for Classifying Parkinson's Disease Based on Gait Analysis," Journal of Internet Computing and Services, vol.11, No.6, pp.13-20, 2010.
  17. Kabir M, Shahjahan, and Murase K, "A new local search based hybrid genetic algorithm for feature selection," Neurocomputing 74, pp.2914-2928, 2011. https://doi.org/10.1016/j.neucom.2011.03.034
  18. Lee CP and Leu Y, "A novel hybrid feature selection method for microarray data analysis," Applied Soft Computing 11, pp.208-213, 2011. https://doi.org/10.1016/j.asoc.2009.11.010
  19. Tapia E, Bulacio P, and Angelone L, "Sparse and stable gene selection with consensus SVM-RFE," Pattern Recognition Letters 33, pp.64-172, 2012.
  20. Mejdoub M and Amar CB, "Classification improvement of local feature vectors over the KNN algorithm," Multimed Tools Appl 64, pp.197-218, 2011.
  21. Krishnamoorthy P and Kumar S, "Hierarchical audio content classification system using an optimal feature selection algorithm," Multimed Tools Appl 54, pp.415-444, 2011. https://doi.org/10.1007/s11042-010-0546-7
  22. Bing Xue, Mengjie Zhang, Will N. Browne, "Particle swarm optimisation for feature selection in classification: Novel initialisation and updating mechanisms," Applied Soft Computing 18, pp.261-276, 2014 https://doi.org/10.1016/j.asoc.2013.09.018
  23. Monami Banerjee and Nikhil R. Pal, "Feature selection with SVD entropy: Some modification and extension," Information Sciences 264, pp.118-134, 2014. https://doi.org/10.1016/j.ins.2013.12.029
  24. Chih-Fong Tsai, Zong-Yao Chen, and Shih-Wen Ke, "Evolutionary instance selection for text classification," Journal of Systems and Software 90, pp.104-113, 2014. https://doi.org/10.1016/j.jss.2013.12.034
  25. Tingting Zhai and Zhenfeng He, "Instance selection for time series classification based on immune binary particle swarm optimization," Knowledge-Based Systems 49, pp.106-115, 2013. https://doi.org/10.1016/j.knosys.2013.04.021
  26. Chih-Fong Tsai, William Eberle, and Chi-Yuan Chu, "Genetic algorithms in feature and instance selection," Knowledge-Based Systems 39, pp.240-247, 2013. https://doi.org/10.1016/j.knosys.2012.11.005