DOI QR코드

DOI QR Code

Complexity Reduction of Blind Algorithms based on Cross-Information Potential and Delta Functions

상호 정보 포텐셜과 델타함수를 이용한 블라인드 알고리듬의 복잡도 개선

  • Kim, Namyong (Division of Electronics, Information & Communication Engineering, Kangwon National University)
  • Received : 2014.01.20
  • Accepted : 2014.04.17
  • Published : 2014.06.30

Abstract

The equalization algorithm based on the cross-information potential concept and Dirac-delta functions (CIPD) has outstanding ISI elimination performance even under impulsive noise environments. The main drawback of the CIPD algorithm is a heavy computational burden caused by the use of a block processing method for its weight update process. In this paper, for the purpose of reducing the computational complexity, a new method of the gradient calculation is proposed that can replace the double summation with a single summation for the weight update of the CIPD algorithm. In the simulation results, the proposed method produces the same gradient learning curves as the CIPD algorithm. Even under strong impulsive noise, the proposed method yields the same results while having significantly reduced computational complexity regardless of the number of block data, to which that of the e conventional algorithm is proportional.

상호정보 포텐셜과 델타 함수열 (cross-information potential and Dirac-delta functions, CIPD) 을 이용한 Equalizer 알고리듬이 충격성 잡음 하에서도 채널의 ISI 제거 성능이 우수한 반면, 블록 처리 방식으로 가중치 갱신을 행하고 있어서 계산량이 많다는 단점을 갖고 있다. 이 논문에서는 CIPD 알고리듬의 계산량을 크게 줄일 수 있는 방법으로서 매 샘플 시간마다 수행하는 CIPD 알고리듬의 이중 합산을 단일 합산으로 바꿀 수 있는 방법을 제시하였다. 실험 결과에서 제안된 방식은 기존 CIPD 알고리듬과 동일한 기울기 학습 곡선을 나타냈다. 또한 충격성 잡음 상황에서도 기존 방식이 블록처리 데이터 수에 비례하는 계산량을 나타낸 반면 제안된 방식은 이와 관계없이 더 작은 계산량을 유지하면서 CIPD 알고리듬과 동일한 기울기 값을 산출해낸다.

Keywords

References

  1. C. Johnson, Jr., "Blind Equalization Using the Constant Modulus Criterion: A Review," Proc. of the IEEE, vol. 86, pp. 1927-1950, Oct. 1998. https://doi.org/10.1109/5.720246
  2. I. Santamaria, P. Pokharel, and J. Principe, "Generalized correlation function: Definition, properties, and application to blind equalization," IEEE Trans. Signal Processing, vol. 54, pp. 2187-2197, June 2006. https://doi.org/10.1109/TSP.2006.872524
  3. J. Principe, D. Xu and J. Fisher, "Information Theoretic Learning," in: S. Haykin, Unsupervised Adaptive Filtering, Wiley, New York, vol. I, pp. 265-319, 2000.
  4. I. Santamaria, D. Erdogmus and J. Principe, "Entropy Minimization for Supervised Digital Communications Channel Equalization," IEEE Transactions on Signal Processing, vol. 50, pp. 1184-1192, May 2002. https://doi.org/10.1109/78.995074
  5. N. Kim, "A new constant modulus algorithm based on minimum Euclidian distance criterion for blind channel equalization," Journal of Korean Society for Internet Information, vol. 10, pp. 19-26, Dec. 2009.
  6. N. Kim, H. Byun, Y. You and K. Kwon, "Blind signal processing for impulsive noise channels," JCN, vol. 14, pp. 27-33, Feb. 2012. https://doi.org/10.1109/JCN.2012.6184548
  7. E. Parzen, "On the estimation of a probability density function and the mode," Ann. Math. Stat. vol. 33, p.1065, 1962. https://doi.org/10.1214/aoms/1177704472
  8. N. Kim, "Decision feedback equalizer algorithms based on error entropy criterion," Journal of Korean Society for Internet Information, vol. 10, pp. 19-26, Dec. 2009.
  9. X. Jian, A. Paiva, I. Park, J. Principe, "A reproducing kernel Hilbert space framework for informationtheoretic learning," IEEE Trans. on Signal Processing, vol. 56, pp. 5891-5902, Dec. 2008. https://doi.org/10.1109/TSP.2008.2005085

Cited by

  1. 상호정보 에너지와 델타함수 기반의 알고리즘에서 크기 조절된 입력의 전력변화에 대한 연구 vol.18, pp.6, 2017, https://doi.org/10.7472/jksii.2017.18.6.1