References
- Ahamed M, Akhtar MJ, Siddiqui MA, et al (2011). Oxidative stress mediated apoptosis induced by nickel ferrite nanoparticles in cultured A549 cells. Toxicology, 283, 101-8. https://doi.org/10.1016/j.tox.2011.02.010
- Ahamed M, Ali D, Alhadlaq HA, Akhtar MJ (2013). Nickel oxide nanoparticles exert cytotoxicity via oxidative stress and induce apoptotic response in human liver cells (HepG2). Chemosphere, 93, 2514-22. https://doi.org/10.1016/j.chemosphere.2013.09.047
- Ahmad J, Ahamed M, Akhtar MJ, et al (2012). Apoptosis induction by silica nanoparticles mediated through reactive oxygen species in human liver cell line HepG2. Toxicol Appl Pharmacol, 259, 160-8. https://doi.org/10.1016/j.taap.2011.12.020
- Akhtar MJ, Ahamed M, Kumar S, et al (2012). Zinc oxide nanoparticles selectively induce apoptosis in human cancer cells through reactive oxygen species. Int J Nanomedicine, 7, 845-57.
- Alarifi S, Ali D, Suliman Y AO, et al (2013a). Oxidative stress contributes to cobalt oxide nanoparticles-induced cytotoxicity and DNA damage in human hepatocarcinoma cells. Int J Nanomedicine, 8, 189-99.
- Alarifi S, Ali D, Alkahtani S, Verma A, et al (2013b). Induction of oxidative stress, DNA damage, and apoptosis in a malignant human skin melanoma cell line after exposure to zinc oxide nanoparticles. Int J Nanomed, 8, 983-93. https://doi.org/10.2217/nnm.13.80
- Alshatwi AA, Subbarayan PV, Ramesh E, et al (2012). Al2O3 nanoparticles induce mitochondria-mediated cell death and upregulate the expression of signaling genes in human mesenchymal stem cells. J Biochem Mol Toxicol, 26, 469-76. https://doi.org/10.1002/jbt.21448
- Athinarayanan J, Periasamy VS, Alsaif MA, Al-Warthan AA, Alshatwi AA (2014). Presence of nanosilica (E551) in commercial food products: TNF-mediated oxidative stress and altered cell cycle progression in human lung fibroblast cells. Cell Biol Toxicol, 30, 89-100. https://doi.org/10.1007/s10565-014-9271-8
-
Chattopadhyay S, Dash SK, Kar Mahapatra S, et al (2014). Chitosan-modified cobalt oxide nanoparticles stimulate TNF-
$\alpha$ -mediated apoptosis in human leukemic cells. J Biol Inorg Chem, 19, 399-414. https://doi.org/10.1007/s00775-013-1085-2 - Cheng G, Guo W, Han L, et al (2013). Cerium oxide nanoparticles induce cytotoxicity in human hepatoma SMMC-7721 cells via oxidative stress and the activation of MAPK signaling pathways. Toxicol In Vitro, 27, 1082-8. https://doi.org/10.1016/j.tiv.2013.02.005
- Foldbjerg R, Dang DA, Autrup H (2011). Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Arch Toxicol, 85, 743-50. https://doi.org/10.1007/s00204-010-0545-5
- Foldbjerg R, Olesen P, Hougaard M, et al (2009). PVP-coated silver nanoparticles and silver ions induce reactive oxygen species, apoptosis and necrosis in THP-1 monocytes. Toxicol Lett, 190, 156-62. https://doi.org/10.1016/j.toxlet.2009.07.009
- Gehrke H, Fruhmesser A, Pelka J, et al (2013). In vitro toxicity of amorphous silica nanoparticles in human colon carcinoma cells. Nanotoxicology, 7, 274-93. https://doi.org/10.3109/17435390.2011.652207
- Gurunathan S, Han JW, Eppakayala V, Jeyaraj M, Kim JH (2013). Cytotoxicity of biologically synthesized silver nanoparticles in MDA-MB-231 human breast cancer cells. Biomed Res Int, 2013, 535796.
- Hou L, Bowman L, Meighan TG, Shi X, Ding M (2013). Induction of miR-21-PDCD4 signaling by tungsten carbidecobalt nanoparticles in JB6 cells involves ROS-mediated MAPK pathways. J Environ Pathol Toxicol Oncol, 32, 41-51. https://doi.org/10.1615/JEnvironPatholToxicolOncol.2013007097
- Kang K, Jung H, Lim JS (2012). Cell death by polyvinylpyrrolidinecoated silver nanoparticles is mediated by ROS-dependent signaling. Biomol Ther, 20, 399-405. https://doi.org/10.4062/biomolther.2012.20.4.399
- Kim AS, Chae CH, Kim J, et al (2012). Silver nanoparticles induce apoptosis through the toll-like receptor 2 pathway. Oral Surg Oral Med Oral Pathol Oral Radiol, 113, 789-98. https://doi.org/10.1016/j.oooo.2012.01.019
- Kim M-C, Cui F-J, Kim Y (2013). Hydrogen peroxide promotes epithelial to mesenchymal transition and stemness in human malignant mesothelioma cells. Asian Pac J Cancer Prev, 14, 3625-30. https://doi.org/10.7314/APJCP.2013.14.6.3625
- Li X, He Q, Shi J (2014). Global gene expression analysis of cellular death mechanisms induced by mesoporous silica nanoparticle-based drug delivery system. ACS Nano, 8, 1309-20. https://doi.org/10.1021/nn4046985
- Mendoza A, Torres-Hernandez JA, Ault JG, et al (2014). Silica nanoparticles induce oxidative stress and inflammation of human peripheral blood mononuclear cells. Cell Stress Chaperones. Doi: 10.1007/s12192-014-0502-y.
- Mirakabad FST, Nejati-Koshki K, Akbarzadeh A, Yamchi MR, Milani M et al. (2014). PLGA-based nanoparticles as cancer drug delivery systems. Asian Pac J Cancer Prev, 15, 517-35. https://doi.org/10.7314/APJCP.2014.15.2.517
- Nguyen KC, Willmore WG, Tayabali AF (2013). Cadmium telluride quantum dots cause oxidative stress leading to extrinsic and intrinsic apoptosis in hepatocellular carcinoma HepG2 cells. Toxicology, 306, 114-23. https://doi.org/10.1016/j.tox.2013.02.010
- Pi J, Jin H, Liu R, et al (2013). Pathway of cytotoxicity induced by folic acid modified selenium nanoparticles in MCF-7 cells. Appl Microbiol Biotechnol, 97, 1051-62. https://doi.org/10.1007/s00253-012-4359-7
- Sahu SC, Zheng J, Graham L, et al (2014). Comparative cytotoxicity of nanosilver in human liver HepG2 and colon Caco2 cells in culture. J Appl Toxicol. Doi: 10.1002/jat.2994.
- Sanpui P, Chattopadhyay A, Ghosh SS (2011). Induction of apoptosis in cancer cells at low silver nanoparticle concentrations using chitosan nanocarrier. ACS Appl Mater Interfaces, 3, 218-28. https://doi.org/10.1021/am100840c
- Saquib Q, Al-Khedhairy AA, Ahmad J, et al (2013). Zinc ferrite nanoparticles activate IL-1b, NFKB1, CCL21 and NOS2 signaling to induce mitochondrial dependent intrinsic apoptotic pathway in WISH cells. Toxicol Appl Pharmacol, 273, 289-97. https://doi.org/10.1016/j.taap.2013.09.001
- Schilrreff P, Mundina-Weilenmann C, Romero EL, Morilla MJ (2012). Selective cytotoxicity of PAMAM G5 core--PAMAM G2.5 shell tecto-dendrimers on melanoma cells. Int J Nanomedicine, 7, 4121-33.
- Selim ME, Hendi AA (2012). Gold nanoparticles induce apoptosis in MCF-7 human breast cancer cells. Asian Pacific J Cancer Prev, 13, 1617-20. https://doi.org/10.7314/APJCP.2012.13.4.1617
- Sharma V, Anderson D, Dhawan A (2012). Zinc oxide nanoparticles induce oxidative DNA damage and ROStriggered mitochondria mediated apoptosis in human liver cells (HepG2). Apoptosis, 17, 852-70. https://doi.org/10.1007/s10495-012-0705-6
- Singh BR, Singh BN, Khan W, Singh HB, Naqvi AH (2012). ROS-mediated apoptotic cell death in prostate cancer LNCaP cells induced by biosurfactant stabilized CdS quantum dots. Biomaterials, 33, 5753-67. https://doi.org/10.1016/j.biomaterials.2012.04.045
- Srivastava RK, Rahman Q, Kashyap MP, et al (2013). Nanotitanium dioxide induces genotoxicity and apoptosis in human lung cancer cell line, A549. Hum Exp Toxicol, 32, 153-66. https://doi.org/10.1177/0960327112462725
- Wang Y, Zi XY, Su J, et al (2012). Cuprous oxide nanoparticles selectively induce apoptosis of tumor cells. Int J Nanomedicine, 7, 2641-52.
- Yoo KC, Yoon CH, Kwon D, et al (2012). Titanium dioxide induces apoptotic cell death through reactive oxygen species-mediated Fas upregulation and Bax activation. Int J Nanomedicine, 7, 1203-14.
- Zhao J, Bowman L, Magaye R, et al (2013). Apoptosis induced by tungsten carbide-cobalt nanoparticles in JB6 cells involves ROS generation through both extrinsic and intrinsic apoptosis pathways. Int J Oncol, 42, 1349-59. https://doi.org/10.3892/ijo.2013.1828
- Zhu Y, Eaton JW, Li C (2012). Titanium dioxide (TiO2) nanoparticles preferentially induce cell death in transformed cells in a Bak/Bax-independent fashion. PLoS One, 7, 50607. https://doi.org/10.1371/journal.pone.0050607
Cited by
- Nanoparticles Promise New Methods to Boost Oncology Outcomes in Breast Cancer vol.16, pp.5, 2015, https://doi.org/10.7314/APJCP.2015.16.5.1683
- Silver nanoparticles: Electron transfer, reactive oxygen species, oxidative stress, beneficial and toxicological effects. Mini review pp.0260437X, 2018, https://doi.org/10.1002/jat.3654