DOI QR코드

DOI QR Code

A Compressed Sensing-Based Signal Recovery Technique for Multi-User Spatial Modulation Systems

다중사용자 공간변조시스템에서 압축센싱기반 신호복원 기법

  • Park, Jeonghong (Department of Information and Communication Engineering, Gyeongsang National University) ;
  • Ban, Tae-Won (Department of Information and Communication Engineering & Institute of Marine Industry, Gyeongsang National University) ;
  • Jung, Bang Chul (Department of Information and Communication Engineering & Institute of Marine Industry, Gyeongsang National University)
  • Received : 2014.05.31
  • Accepted : 2014.07.09
  • Published : 2014.07.31

Abstract

In this paper, we propose a compressed sensing-based signal recovery technique for an uplink multi-user spatial modulation (MU-SM) system. In the MU-SM system, only one antenna among $N_t$ antennas of each user becomes active by nature. Thus, this characteristics is exploited for signal recovery at a base station. We modify the conventional orthogonal matching pursuit (OMP) algorithm which has been widely used for sparse signal recovery in literature for the MU-SM system, which is called MU-OMP. We also propose a parallel OMP algorithm for the MU-SM system, which is called MU-POMP. Specifically, in the proposed algorithms, antenna indices of a specific user who was selected in the previous iteration are excluded in the next iteration of the OMP algorithm. Simulation results show that the proposed algorithms outperform the conventional OMP algorithm in the MU-SM system.

본 논문에서는 다중사용자 (Multiuser, MU)환경의 상향링크 공간변조 (Spatial Modulation, SM)시스템(MU-SM)에서 병렬직교매칭퍼슛 (Parallel OMP, POMP)검출 기법을 적용하여 신호 복원 성능을 개선하는 기법을 제안하고 그 성능분석을 한다. MU-SM시스템의 전송신호는 사용자당 $N_t$개의 안테나중 1개의 안테나만을 사용하여 변조심벌을 전송하는 특성이 있으므로 수신단에서 신호복원 시 이러한 특성을 고려한다. MU-OMP기법은 첫번째 반복과정을 수행 후 두 번째 이후의 인덱스를 찾을 때는 이전의 인덱스에 해당하는 안테나를 가진 사용자의 모든 안테나 인덱스를 제외하고 다음 인덱스를 찾는다. 이것은 한명의 사용자 안테나들 중 2개 이상의 인덱스가 선택되는 것을 방지하여 오류 확률을 줄일 수 있다. 시뮬레이션을 통해 제안한 MU-OMP와 MU-POMP 검출 기법이 기존의 압축센싱기반의 신호복원기술보다 성능이 월등함을 확인하였다.

Keywords

References

  1. F. Rusek, D. Persson, B. K. Lau, E. G. Larsson, T. L. Marzetta, O. Edfors, and F. Tufvesson, "Scaling up MIMO: Opportunities and challenges with very large arrays," IEEE Signal Process. Mag., vol. 30, no. 1, pp. 40-60, Jan. 2013.
  2. R. Mesleh, H. Haas, S. Sinanovic, C. W. Ahn, and S. Yun, "Spatial modulation," IEEE Trans. Veh. Technol., vol. 57, no. 4, pp. 2228-2241, Jul. 2008. https://doi.org/10.1109/TVT.2007.912136
  3. M. Di Renzo, H. Haas, A. Ghrayeb, S. Sugiura, and L. Hanzo, "Spatial modulation for generalized MIMO: Challenges, opportunities and implementation," in Proc. IEEE, vol. 102, no. 1, pp. 56-103, Jan. 2014. https://doi.org/10.1109/JPROC.2013.2287851
  4. N. Serafimovskil, S. Sinanovic, M. Di Renzo, and H. Haas, "Multiple access spatial modulation," EURASIP J. Wirel. Commun. and Net., 2012:299, Sept. 2012. https://doi.org/10.1186/1687-1499-2012-299
  5. D. Donoho, "Compressed sensing," IEEE Trans. Inf. Theory, vol. 52, no. 4, pp. 1289-1306, Apr. 2006. https://doi.org/10.1109/TIT.2006.871582
  6. J. A. Tropp and A. C. Gilbert, "Signal recovery from random measurements via orthogonal matching pursuit," IEEE Trans. Inf. Theory, vol. 53, no. 12, pp. 4655-4666, Dec. 2007. https://doi.org/10.1109/TIT.2007.909108
  7. S.-W. Park, J. Park, and B. C. Jung, "On the sparse signal recovery with parallel orthogonal matching pursuit," IEICE Trans. Fundamentals, vol. E96-A, no. 12, pp. 2728-2730, Dec. 2013. https://doi.org/10.1587/transfun.E96.A.2728
  8. C.-M. Yu, S.-H. Hsieh, H.-W. Liang, and C.-S. Lu, "Compressed sensing detector design for space shift keying in MIMO systems," IEEE Commun. Lett., vol. 16, no. 10, pp. 1556-1559, Oct. 2012. https://doi.org/10.1109/LCOMM.2012.091212.121319
  9. B. Shim and B. Song "Multiuser detection via compressive sensing," IEEE Commun. Lett., vol. 16, no. 7, Jul. 2012.