DOI QR코드

DOI QR Code

Detection Techniques for High Dimensional Spatial Multiplexing MIMO System

다차원 공간다중화 MIMO 시스템의 복조 기법

  • Received : 2014.05.30
  • Accepted : 2014.07.09
  • Published : 2014.07.31

Abstract

With the increasing demands on high data rate, there has been growing interests in multi-input multi-output (MIMO) technology based on spatial multiplexing (SM) since it can transmit independent information in each spatial stream. Recent standards such as 3GPP LTE-advanced and IEEE 802.11ac support up to eight spatial streams, and massive MIMO and mm-wave systems that are expected to be included in beyond 4G systems are considering employment of tens to hundreds of antennas. Since the complexity of the optimum maximum likelihood based detection method increases exponentially with the number of antennas, low-complexity SM MIMO detection becomes more critical as the number of antenna increases. In this paper, we first review the results on the detection schemes for SM MIMO systems. In addition, massive MIMO reception schemes based on simple linear filtering which does not require exponential increment of complexity will be explained, followed by brief description on receiver design for future high dimensional SM MIMO systems.

전송 데이터 용량의 요구치가 급속히 증가하면서 공간 스트림마다 독립된 정보를 전송할 수 있는 spatial multiplexing (SM) 기반 multi-input multi-output (MIMO) 기술에 대한 관심이 증대되고 있다. 3GPP LTE-advanced, IEEE 802.11ac 등의 최근 표준들에서는 최대 8개까지의 공간 스트림을 지원하고 있으며, beyond 4G 시스템의 핵심 기술로 고려되고 있는 massive MIMO나 mm-wave 시스템에서는 수십~수백개 이상의 안테나 까지도 지원을 고려하고 있다. SM MIMO 시스템의 최적 복조 기법인 maximum likelihood (ML) 방식의 연산복잡도는 안테나수에 지수적으로 증가하므로, 안테나 수의 급속한 증가는 연산량의 급격한 증가를 유발하게 되어 낮은 복잡도로 구현 가능한 수신 기법들에 대한 필요성을 증대시키게 되었다. 본 논문에서는 이러한 SM MIMO 복조 기법들에 대한 연구 결과들을 설명한다. 또한, 기존의 복조 기법들과 달리, 지수적으로 복잡도의 증가가 필요하지 않는 간단한 선형 기법에 기반한 massive MIMO 시스템용 수신 기법에 대해서도 설명하고 향후의 시스템 디자인 시 고려할 사항들에 대해 간략히 정리한다.

Keywords

References

  1. Q. Li, G. Li, W. Lee, M. Lee, D. Mazzarese, B. Clerckx, and Z. Li, "MIMO techniques in WiMAX and LTE: A feature overview," IEEE Commun. Mag., vol. 48, no. 5, pp. 86-92, May 2010.
  2. S. Yong, P. Xia, and A. Valdes-Garcia, 60GHz technology for Gbps WLAN and WPAN: From theory to practice, NY: John Wiley & Sons, 2011.
  3. J.-W. Choi, J. Lee, H. Kwon, and I. Kang, Chapter 8: Efficient MIMO receiver design for next generation wireless systems (R. Mahmoudi and K. Iniewski, Low Power Emerging Wireless Technologies), CRC press, Feb. 2013.
  4. F. Rusek, D. Persson, B. K. Lau, E. G. Larsson, T. L. Marzetta, O. Edfors, and F. Tufvesson, "Scaling up MIMO: Opportunities and challenges with large arrays," IEEE Signal Processing Mag., vol. 30, no. 1, pp. 40-60, Jan. 2012.
  5. C. Lee, C.-B. Chae, T. Kim, S. Choi, and J. Lee, "Network massive MIMO for cell-boundary users: From a precoding normalization perspective," in Proc. IEEE Globecom, pp. 233-237, California, USA, Dec. 2012.
  6. Y.-G Lim and C.-B. Chae, "Understanding of massive MIMO technology," IEEK Mag., vol. 39, no. 11, pp. 63-70, Nov. 2012.
  7. S. Sugiura, S. Chen, and L. Hanzo, "A universal space-time architecture for multiple-antenna aided systems," IEEE Commun. Surveys & Tutorials, vol. 14, no. 2, pp. 401-420, Jan. 2012. https://doi.org/10.1109/SURV.2011.041911.00105
  8. G. J. Foschini, "Space-time block codes from orthogonal designs," Bell Labs Technical J., vol. 2, pp. 41-59, 1996.
  9. P. Wolniansky, G. Foschini, G. Golden, and R. Valenzuela, "V-BLAST: an architecture for realizing very high data rates over the rich-scattering wireless channel," in Proc. URSI Int. Symp. Signals, Systems, and Electronics (ISSSE), pp. 295-300, Pisa, Italy, Sept. 1998.
  10. B. M. Hochwald and S. ten Brink, "Achieving near-capacity on a multiple-antenna channel," IEEE Trans. Commun., vol. 51, no. 3, pp. 389-399, Mar. 2003. https://doi.org/10.1109/TCOMM.2003.809789
  11. C. Studer and H. Bolcskei, "Soft-input soft-output single tree-search sphere decoding," IEEE Trans. Inf. Theory, vol. 56, no. 10, pp. 4827-4842, Oct. 2010. https://doi.org/10.1109/TIT.2010.2059730
  12. Y. L. C. de Jong and T. J. Willink, "Iterative tree search detection for MIMO wireless systems," IEEE Trans. Commun., vol. 53, no. 6, pp. 930-935, Jun. 2005. https://doi.org/10.1109/TCOMM.2005.849638
  13. L. G. Barbero and J. S. Thompson, "Extending a fixed-complexity sphere decoder to obtain likelihood information for turbo-MIMO systems," IEEE Trans. Veh. Technol., vol. 57, no. 5, pp. 2804-2814, Sept. 2008. https://doi.org/10.1109/TVT.2007.914064
  14. C. Studer, A. Burg, and H. Bolcskei, "Soft-output sphere decoding: algorithms and VLSI implementation," IEEE J. Selected Areas in Commun., vol. 26, no. 2, pp. 290-300, Feb. 2008. https://doi.org/10.1109/JSAC.2008.080206
  15. L. Milliner, E. Zimmermann, J. R. Barry, and G. Fettweis, "A fixed-complexity smart candidate adding algorithm for soft-output MIMO detection," IEEE J. Selected Topics in Signal Processing, vol 3, no. 6, pp. 1016-1025, Dec. 2009. https://doi.org/10.1109/JSTSP.2009.2035800
  16. J.-S. Kim, S.-H. Moon, and I. Lee, "A new reduced complexity ML detection scheme for MIMO systems," IEEE Trans. Commun., vol. 58, no. 4, pp. 1302-1310, Apr. 2010. https://doi.org/10.1109/TCOMM.2010.04.080450
  17. R. de Lamare and R. Sampaio-Neto, "Adaptive reduced-rank equalization algorithms based on alternating optimization design techniques for MIMO systems," IEEE Trans. Veh. Technol., vol. 60, no. 6, pp. 2482-2494, Jul. 2011. https://doi.org/10.1109/TVT.2011.2157187
  18. J. Lee, J.-W. Choi, and H.-L. Lou, "MIMO maximum likelihood soft demodulation based on dimension reduction," in Proc. IEEE Globecom, pp. 1-5, Miami, FL, USA, Dec. 2010.
  19. J. Ketonen, M. Juntti, and J. R. Cavallaro, "Performance-complexity comparison of receivers for a LTE MIMO-OFDM system," IEEE Trans. Signal Processing, vol. 58, no. 6, pp. 3360-3372, Jun. 2010. https://doi.org/10.1109/TSP.2010.2044290
  20. S. W. Kim, and K. P. Kim, "Log-likelihood -ratio-based detection ordering in V-BLAST," IEEE Trans. Commun., vol. 54, no. 2, pp. 302-307, Feb. 2006. https://doi.org/10.1109/TCOMM.2005.863731
  21. J.-W. Choi, J. Lee, H.-L. Lou, and J. Park, "Improved MIMO SIC detection exploiting ML criterion," in Proc. IEEE VTC, pp. 1-5, San Francisco, CA , USA, Sept. 2011.
  22. J.-W. Choi, J. Lee, J. P. Choi, and H.-L. Lou, "MIMO soft near-ML demodulation with fixed low-complexity candidate selection," IEICE Trans. Commun., vol. E95-B, no. 9, pp. 2884-2891, Sept. 2012. https://doi.org/10.1587/transcom.E95.B.2884
  23. S. -S. Shin, H. Choi, and J.-W. Choi, "A low-complexity iterative MIMO detection and decoding scheme using dimension reduction," Trans. Emerging Telecommun. Technol. (ETT), online published, May 2014.
  24. H. Vikalo, B. Hassibi, and T. Kailath, "Iterative decoding for MIMO channels via modified sphere decoder," IEEE Trans. Wirel. Commun., vol. 3, no. 6, pp. 2299-2311, Nov. 2014.
  25. J. W. Choi, A. C. Singer, J. Lee, and N. I. Cho, "Improved linear soft-input soft-output detection via soft feedback successive interference cancellation," IEEE Trans. Commun., vol. 58, no. 3, pp. 986-996, Mar. 2010. https://doi.org/10.1109/TCOMM.2010.03.080469
  26. J. Hoydis, J. S. ten Brink, and M. Debbah, "Massive MIMO: How many antennas do we need?," in Proc. Allerton Conf. on Comm. Control and Comp., pp. 545-550, Monticello, IL, USA, Sept. 2011.
  27. J. Lee, J.-W. Choi, H. Lou, and J. Park "Soft MIMO ML demodulation based on bitwise constellation partitioning," IEEE Commun. Lett., vol. 13, no. 10, pp. 736-738, Oct. 2009 https://doi.org/10.1109/LCOMM.2009.091320
  28. B. H. Shim and B. J. Lee, "Evolution of MIMO Technology," J. KICS, vol. 38A, no. 8, pp. 712-723, Aug. 2013. https://doi.org/10.7840/kics.2013.38A.8.712
  29. S. Ahmed and S. Kim, "Low Complexity LSD Scheme for Joint Iterative MIMO Detection," J. KICS, vol. 38C, no. 11, pp. 1051-1059, Nov. 2013. https://doi.org/10.7840/kics.2013.38C.11.1051
  30. M. C. Jung and S. Y. Choi, "Optimal Number of Base Station Antennas and Users in MF Based Multiuser Massive MIMO Systems," J. KICS, vol. 38A, no. 8, pp. 724-732, Aug. 2013. https://doi.org/10.7840/kics.2013.38A.8.724