DOI QR코드

DOI QR Code

Morphological Characteristics Analysis of Root Plate in Wind-Uprooted Trees

풍도목 근분의 구조형태학적 특성 분석

  • Kim, Dongyeob (Division of Forest Disaster Management, Korea Forest Research Institute) ;
  • Ahn, Byungkyu (Department of Forest Sciences, Seoul National Univeristy) ;
  • Kim, Myeong Pil (University Forest, Seoul National University) ;
  • Im, Sangjun (Department of Forest Sciences, Seoul National Univeristy)
  • Received : 2014.03.11
  • Accepted : 2014.04.06
  • Published : 2014.06.30

Abstract

The objectives of this study were to identify the root plate dimension of wind-uprooted trees and to analyze the relationship among wind direction, aboveground and belowground properties of the trees. The root plates of 77 Japanese larches (Larix kaempferi) and 24 Korean pines (Pinus koraiensis), which were uprooted by a typhoon in 2012, in the Taehwa Experimental Forest of Seoul National University, Korea, were investigated. The results showed the root plate shape could be assumed to be an oval or a circle in above view, and half an ellipse in side view, respectively. Also, the number and surface area of individual roots in root plates were greater in uprooting direction than in non-uprooting direction. The results of correlation analyses between aboveground and belowground properties indicated DBH had more significant correlation with belowground properties than tree height. Finally, simple linear relationships were derived for significantly correlated tree aboveground and belowground properties.

이 연구는 풍도목 근분의 구조형태적 특성을 파악하고, 풍향에 대응하는 수목뿌리의 발달 특성 및 수목의 지상부와 지하부 특성 간의 상관관계를 분석하고자 하는 목적으로 수행되었다. 이를 위해서 서울대학교 태화산 학술림에서 발생한 77 그루의 낙엽송과 24 그루의 잣나무 풍도목의 근분에 대한 현장조사를 실시하였다. 근분의 형태적 특성을 조사한 결과, 풍도목 근분은 타원형 혹은 원형의 평면형을 보이며, 측면에서 살펴보면 반 타원체의 형태를 보였다. 또한, 근분 내 뿌리의 발달 특성을 조사한 결과, 평균적으로 수목의 전도 방향에서 비전도 방향보다 뿌리의 개수가 더 많고, 뿌리 표면적이 더 큰 것으로 나타났다. 또한, 수목의 지상부와 지하부 특성 간의 선형상관관계를 조사한 결과, DBH는 수고보다 근분 크기와 뿌리 표면적에 대해 상대적으로 강한 선형적인 상관관계를 보였다. 이러한 상관관계 분석 결과를 토대로 상관관계가 뚜렷한 수목 지상부와 지하부 특성 간의 단순선형회귀식을 수립하였다.

Keywords

References

  1. Achim, A. and Nicoll, B.C. 2009. Modelling the anchorage of shallow-rooted trees. Forestry 82(3): 273-284. https://doi.org/10.1093/forestry/cpp004
  2. Achim, A., Ruel, J.C., Gardiner, B.A., Laflamme, G., and Meunier, S. 2005. Modelling the vulnerability of balsam fir forests to wind damage. Forest Ecology and Management 204: 35-50.
  3. Bischetti, G.B., Chiaradia, E.A., Simonato, T., Speziali, B., Vitali, B., Vullo, P., and Zocco, A. 2005. Root strength and root area ratio of forest species in Lombardy (Northern Italy). Plant and Soil 278: 11-22. https://doi.org/10.1007/s11104-005-0605-4
  4. Coder, K.D. 2010. Root strength and tree anchorage. University of Georgia Warnell School of Forestry and Natural Resources Monograph Publication WSFNR10-19. pp. 88.
  5. Danjon, F., Fourcaud, T., and Bert, D. 2005. Root architecture and wind-firmness of mature Pinus pinaster. New Phytologist 168(2): 387-400. https://doi.org/10.1111/j.1469-8137.2005.01497.x
  6. Dupuy, L., Fourcaud, T., and Stokes, A. 2005. A numerical investigation into factors affecting the anchorage of roots in tension. European Journal of Soil Science 56(3): 319-327. https://doi.org/10.1111/j.1365-2389.2004.00666.x
  7. Fourcaud, T., Ji, J., Zhang, Z., and Stokes, A. 2008. Understanding the impact of root morphology on overturning mechanisms: a modelling approach. Annals of Botany 101(8): 1267-1280.
  8. Ghani, M.A., Stokes, A., and Fourcaud, T. 2009. The effect of root architecture and root loss through trenching on the anchorage of tropical urban trees (Eugenia grandis Wight). Trees 23: 197-209. https://doi.org/10.1007/s00468-008-0269-9
  9. Im, D., Kim, W., Choi, S., and Kim, Y. 2011. Investigation of critical breaking moment through field tree-pulling test. Journal of the Korean Society of Civil Engineers 31(4B): 323-332 (in Korean).
  10. Khuder, H., Stokes, A., Danjon, F., Gouskou, K., and Lagane, F. 2007. Is it possible to manipulate root anchorage in young trees? Plant and Soil 294: 87-102. https://doi.org/10.1007/s11104-007-9232-6
  11. Koizumi, A., Oonuma, N., Sasaki, Y., and Takahashi, K. 2007. Difference in uprooting resistance among coniferous species planted in soils of volcanic origin. Journal of Forest Research 12(3): 237-242. https://doi.org/10.1007/s10310-007-0001-4
  12. Korea Forest Service. 2006. The number of typhoon and typhoon-induced, uprooted trees. Report Data for National Assembly (in Korean).
  13. Lundstrom, T., Jonas, T., Stockli, V., and Ammann, W. 2007. Anchorage of mature conifers: resistive turning moment, root-soil plate geometry and root growth orientation. Tree Physiology 27(9): 1217-1227. https://doi.org/10.1093/treephys/27.9.1217
  14. Moore, J.R. 2000. Differences in maximum resistive bending moments of Pinus radiata trees grown on a range of soil types. Forest Ecology and Management 135: 63-71. https://doi.org/10.1016/S0378-1127(00)00298-X
  15. Nicoll, B.C., Easton, E.P., Milner, A.D., Walker, C., and Coutts, M.P. 1995. Wind stability factors in tree selection: distribution of biomass within root systems of Sitka spruce clones. pp. 276-292. In: Coutts, M.P. and Grace, J. (Eds.). Wind and Trees. Cambridge University Press. Cambridge, U.K.
  16. Peltola, H.M. 2006. Mechanical stability of trees under static loads. American Journal of Botany 93(10): 1501-1511. https://doi.org/10.3732/ajb.93.10.1501
  17. Stokes, A., Nicoll, B.C., Coutts, M.P., and Fitter, A.H. 1997. Responses of young Sitka spruce clones to mechanical perturbation and nutrition: effect on biomass allocation, root development and resistance to bending. Canadian Journal of Forest Research 27: 1049-1057. https://doi.org/10.1139/x97-041
  18. Stokes, A. and others. 2005. Mechanical resistance of different tree species to rockfall in the French Alps. Plant and Soil 278: 107-117. https://doi.org/10.1007/s11104-005-3899-3
  19. Taehwa Experimental Forest. 2009. The current status of Taehwa Experimental Forest. The Internal Report of Seoul National University (in Korean).
  20. Tobin, B. and others. 2007. Towards developmental modelling of tree root systems. Plant Biosystems 141(3): 481-501. https://doi.org/10.1080/11263500701626283
  21. Ulanova, N.G. 2000. The effects of windthrow on forests at different spatial scales: a review. Forest Ecology and Management 135: 155-167. https://doi.org/10.1016/S0378-1127(00)00307-8
  22. Urata, T., Shibuya, M., Koizumi, A., Torita, H., and Cha, J. 2012. Both stem and crown mass affect tree resistance to uprooting. Journal of Forest Research 17(1): 65-71. https://doi.org/10.1007/s10310-011-0249-6
  23. Youn, H.J., Park, K.H., Lee, M., Won, M., and Kim, K. 2011. Analysis of the relationship between the characteristics of the wind damaged trees and the wind caused by typhoon 'Kompasu'. Journal of Korean Forest Society 100(2): 246-255 (in Korean).

Cited by

  1. Effects of Mg Enhancement and Heat Treatment on Microstructures and Tensile Properties of Al2Ca-Added ADC12 Die Casting Alloys vol.32, pp.10, 2016, https://doi.org/10.1016/j.jmst.2016.07.015
  2. 울진 소광리 산림유전자원보호구역 내 금강소나무 고사지역의 지형 환경 특성 분석 vol.19, pp.1, 2017, https://doi.org/10.5532/kjafm.2017.19.1.10
  3. Wind affects the growth, root anchorage and tensile strength of Australian pine (Casuarina equisetifolia) seedlings vol.24, pp.4, 2019, https://doi.org/10.1080/13416979.2019.1624306