DOI QR코드

DOI QR Code

Seed Germination and Seedling Survival Rate of Pinus densiflora and Abies holophylla in Open-field Experimental Warming Using the Infrared Lamp

적외선등을 이용한 실외 실험적 온난화 처리에 따른 소나무와 전나무의 종자 발아 및 유묘 생존율

  • Cho, Min Seok (Forest Practice Research Center, Korea Forest Research Institute) ;
  • Hwang, Jaehong (Forest Practice Research Center, Korea Forest Research Institute) ;
  • Yang, A-Ram (Forest Practice Research Center, Korea Forest Research Institute) ;
  • Han, Saerom (Department of Environmental Science and Ecological Engineering, Korea University) ;
  • Son, Yowhan (Department of Environmental Science and Ecological Engineering, Korea University)
  • 조민석 (국립산림과학원 산림생산기술연구소) ;
  • 황재홍 (국립산림과학원 산림생산기술연구소) ;
  • 양아람 (국립산림과학원 산림생산기술연구소) ;
  • 한새롬 (고려대학교 환경생태공학과) ;
  • 손요환 (고려대학교 환경생태공학과)
  • Received : 2014.03.10
  • Accepted : 2014.05.29
  • Published : 2014.06.30

Abstract

The purpose of this study was to investigate the effect of experimental warming using infrared lamps on seed germination and seedling survival rate of Pinus densiflora and Abies holophylla. The air temperature of warmed plots had been automatically maintained 3 higher than control plots. The percent germinations (%) of the two coniferous species were higher in warmed plots than in control plots, however a significant difference appeared only in A. holophylla. In addition, P. densiflora and A. holophylla showed the shorter mean germination time (days), higher germination rate ($seed{\cdot}day^{-1}$) and germination energy (%) in warmed plots than in control plots. A. holophylla showed a higher seedling mortality rate in the warmed plots than in control plots because of increased air and soil temperatures and decreased soil moisture. However, seedling survival rate of P. densiflora showed no significant difference by experimental warming. In the future, changed air and soil temperatures and soil moisture due to global warming will induce a variety of changes in seed germination and survival rate of tree species in nursery culture. Therefore, it is necessary to establish adaptation strategies that improve techniques in nursery culture against global warming.

본 연구는 지구 온난화와 관련한 대응 대책 마련을 위해서 대기 온도 상승에 따른 주요 침엽수의 종자 발아 및 발아 후 유묘의 생존율 변화를 알아보고자 수행하였다. 소나무와 전나무를 대상으로 적외선등을 이용하여 대조구 보다 온난화 처리구의 대기 온도를 $3^{\circ}C$ 높게 유지하는 실외 실험적 온난화 처리를 실시하였다. 온난화 처리에 따른 대기 온도 상승으로 두 수종 모두 발아율이 높아지는 경향을 보였지만, 전나무에서만 유의적 차이가 나타났다. 소나무와 전나무 두 수종 모두 온난화 처리구가 대조구보다 평균발아일수는 유의적으로 감소하였으며, 온난화 처리구에서 높은 발아속도와 발아세를 보였다. 온도 상승과 토양 수분 감소에 따라 전나무 유묘의 고사율은 증가하였지만, 소나무는 온난화 처리에 따른 차이를 보이지 않았다. 향후, 지구 온난화에 따른 대기와 토양 온도 상승 및 토양 수분감소로 양묘과정에서 종자 발아 및 유묘 생존율의 변화가 예상되기 때문에 지구 온난화에 대응할 수 있는 양묘기술 개선이 필요할 것으로 판단된다.

Keywords

References

  1. Aronson, E.L. and McNulty, S.G. 2009. Appropriate experimental ecosystem warming methods by ecosystem, objective, and practicality. Agricultural and Forest Meteorology 149(11): 1791-1799. https://doi.org/10.1016/j.agrformet.2009.06.007
  2. Bale, J.S., Masters, G.J., Hodkinson, I.D., Awmack, C., Bezemer, T.M., Brown, V.K., Butterfield, J., Buse, A., Coulson, J.C., Farrar, J., Good, J.E.G., Harrington, R., Hartley, S., Jones, T.H., Lindroth, R.L., Press, M.C., Symrnioudis, I., Watt, A.D., and Whittaker, J.B. 2002. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Global Change Biology 8(1): 1-16. https://doi.org/10.1046/j.1365-2486.2002.00451.x
  3. Barber, V.A., Juday, G.P., and Finney, B.P. 2000. Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress. Nature 405: 668-673. https://doi.org/10.1038/35015049
  4. Bonner, F.T., Karrfalt, R.P. and Nisley, R.G. 2008. The Woody plant seed manual. USDA Forest Service. Washington. pp. 1223.
  5. Castro, J., Zamora, R., Hodar, J.A., and Gomez, J.M. 2005. Alleviation of summer drought boosts establishment success of Pinus sylvestris in a Mediterranean mountain: an experimental approach. Plant Ecology 181: 191-202. https://doi.org/10.1007/s11258-005-6626-5
  6. Chen, J., Franklin, J.F., and Spies, T.A. 1995. Growing season microclimatic gradients from clearcut edges into oldgrowth Douglas-fir forests. Ecological Applications 5: 74-86. https://doi.org/10.2307/1942053
  7. Cho, M.S., Lee, S.W., Hwang, J., and Kim, J.W. 2012. Growth performance and photosynthesis of two deciduous hardwood species under different irrigation period treatments in a container nursery system. Korean Journal of Agricultural and Forest Meteorology 14(1): 28-38 (in Korean with English abstract). https://doi.org/10.5532/KJAFM.2012.14.1.028
  8. Chung, H., Muraoka, H., Nakamura, M., Han, S., Muller, O., and Son, Y. 2013. Experimental warming studies on tree species and forest ecosystems: a literature review. Journal of Plant Research 126: 447-460. https://doi.org/10.1007/s10265-013-0565-3
  9. Climate Change Information Center. 2014. IPCC SRES A1B scenario. https://www.climate.go.kr:8005/index.html (2014. 2. 24).
  10. Danby, R.K. and Hik, D.S. 2007. Responses of white spruce (Picea glauca) to experimental warming at a subarctic alpine treeline. Global Change Biology 13(2): 437-451. https://doi.org/10.1111/j.1365-2486.2006.01302.x
  11. Escudero, A., Perez-Garcia, F., and Luzuriaga, A.L. 2002. Effects of light, temperature and population variability on the germination of seven Spanish pines. Seed Science Research 12(4): 261-271. https://doi.org/10.1079/SSR2002116
  12. Farnsworth, E.J., Nunez-Farfan, J., Careaga, S.A., and Bazzaz, F.A. 1995. Phenology and growth of three temperate forest life forms in response to artificial soil warming. Journal of Ecology 83: 967-977. https://doi.org/10.2307/2261178
  13. Galiano, L., Martinez-Vilalta, J., and Lloret, F. 2010. Droughtinduced multifactor decline of Scots pine in the Pyrenees and potential vegetation change by the expansion of cooccurring oak species. Ecosystems 13: 978-991. https://doi.org/10.1007/s10021-010-9368-8
  14. Germino, M.J., Smith, W.K., and Resor, A.C. 2002. Conifer seedling distribution and survival in an alpine-treeline ecotone. Plant Ecology 162: 157-168. https://doi.org/10.1023/A:1020385320738
  15. Gunderson, C.A., Edwards, N.T., Walker, A.V., O'Hara, K.H., Campion, C.M., and Hanson, P.J. 2012. Forest phenology and a warmer climate-growing season extension in relation to climatic provenance. Global Change Biology 18(6): 2008-2025. https://doi.org/10.1111/j.1365-2486.2011.02632.x
  16. Harte, J. and Shaw, R. 1995. Shifting dominance within a montane vegetation community: results of a climate-warming experiment. Science 267: 876-880. https://doi.org/10.1126/science.267.5199.876
  17. Hernandez, J., Olmos, A.E., Corpas, F.J., Sevilla, F., and Rio, A. 1995. Salt-induced oxidative stress in chloroplasts of pea plant. Plant Science 105(2): 151-167. https://doi.org/10.1016/0168-9452(94)04047-8
  18. Hillier, S.H., Sutton, F., and Grime, J.P. 1994. A new technique for the experimental manipulation of temperature in plant communities. Functional Ecology 8: 755-762. https://doi.org/10.2307/2390235
  19. Hogenbirk, J.C. and Wein, R.W. 1992. Temperature effects on seedling emergence from boreal wetland soils: implications for climate change. Aquatic Botany 42: 361-373. https://doi.org/10.1016/0304-3770(92)90055-N
  20. Houle, G. 1994. Spatiotemporal patterns in the components of regeneration of four sympatric tree species-Acer rubrum, A. saccharum, Betula alleghaniensis and Fagus grandifolia. Journal of Ecology 82: 39-53. https://doi.org/10.2307/2261384
  21. Hoyle, G.L., Venn, S.E., Steadman, K.J., Good, R.B., McAuliffe, E.J., Williams, E.R., and Nicotra1, A.B. 2013. Soil warming increases plant species richness but decreases germination from the alpine soil seed bank. Global Change Biology 19(5): 1549-1561. https://doi.org/10.1111/gcb.12135
  22. Ineson, P., Coward, P.A., and Hartwig, U.A. 1998. Soil gas fluxes of $N_2O$, $CH_4$ and $CO_2$ beneath Lolium perenne under elevated $CO_2$: The Swiss free air carbon dioxide enrichment experiment. Plant and Soil 198: 89-95. https://doi.org/10.1023/A:1004298309606
  23. IPCC. 2007. Climate change (2007): The physical science basis. Working Group I Contribution to the Fourth Assessment Report of the IPCC. Cambridge University Press, Cambridge.
  24. Jo, W., Son, Y., Chung, H., Noh, N.J., Yoon, T.K., Han, S., Lee, S.J., Lee, S.K., Yi, K., and Jin, L. 2011. Effect of artificial warming on chlorophyll contents and net photosynthetic rate of Quercus variabilis seedlings in an open-field experiment. Journal of Korean Forest Society 100(4): 733-737 (in Korean with English abstract).
  25. Kimball, B.A., Conley, M.M., Wang, S., Lin, X., Lou, C., Morgan, J., and Smith, D. 2008. Infrared heater arrays for warming ecosystem field plots. Global Change Biology 14(2): 309-320.
  26. Klady, R.A., Henry, G.H.R., and Lemay, V. 2011. Changes in high arctic tundra plant reproduction in response to long term experimental warming. Global Change Biology 17: 1611-1624. https://doi.org/10.1111/j.1365-2486.2010.02319.x
  27. Knapp, A.K. and Smith, W.K. 1982. Factors influencing understory seedling establishment of Engelmann spruce (Picea engelmannii) and subalpine fir (Abies lasiocarpa) in southeast Wyoming. Canadian Journal of Botany 60(12): 2753-2761. https://doi.org/10.1139/b82-337
  28. Korea Forest Service. 2012. The guidelines for seed and nursery practices. KFS. p. 58 (in Korean).
  29. Kozlowski, T.T., Kramer, P.J., and Pallardy, S.G. 1991. The physiology of woody plants. A.P. New York. pp. 811.
  30. Kullman, L. 2007. Tree line population monitoring of Pinus sylvestris in the Swedish Scandes, 1973-2005: implications for tree line theory and climate change ecology. Journal of Ecology 95(1): 41-52. https://doi.org/10.1111/j.1365-2745.2006.01190.x
  31. Lee, S.J., Han, S., Yoon, T.K., Chung, H., Noh, N.J., Jo, W., Park, C. Ko, S., Han, S.H., and Son, Y. 2012. Effects of experimental warming on growth of Quercus variabilis seedlings. Journal of Korean Forest Society 101(4): 722-728 (in Korean with English abstract).
  32. Lee, S.J., Han, S., Yoon, T.K., Han, S.H., Jung, Y., Yun, S.J., and Son, Y. 2013. Growth and physiological characteristics of Pinus densiflora seedlings in response to openfield experimental warming using the infrared lamp. Journal of Korea Forest Society 102(4): 522-529 (in Korean with English abstract). https://doi.org/10.14578/jkfs.2013.102.4.522
  33. Legras, E.C., Vander Wall, S.B., and Board, D.I. 2010. The role of germination microsite in the establishment of sugar pine and Jeffrey pine seedlings. Forest Ecology and Management 260: 806-813. https://doi.org/10.1016/j.foreco.2010.05.039
  34. Lewis, J.D., Lucash, M., Olszyk, D., and Tingey, D.T. 2001. Seasonal patterns of photosynthesis in Douglas fir seedlings during the third and fourth year of exposure to elevated $CO_2$ and temperature. Plant Cell & Environment 24: 539-548. https://doi.org/10.1046/j.1365-3040.2001.00700.x
  35. Little, R.L., Peterson, D.L., and Conquest, L.L. 1994. Regeneration of subalpine fir (Abies lasiocarpa) following fireeffects of climate and other factors. Canadian Journal of Forest Science 24: 934-944. https://doi.org/10.1139/x94-123
  36. Lloret, F., Penuelas, J., Prieto, P., Llorens, L., and Estiarte, M. 2009. Plant community changes induced by experimental climate change: Seedling and adult species composition. Perspectives in Plant Ecology, Evolution and Systematics 11(1): 53-63. https://doi.org/10.1016/j.ppees.2008.09.001
  37. Luomala, E.M., Laitinen, K., Kellomaki, S., and Vapaavuori, E. 2003. Variable photosynthetic acclimation in consecutive cohorts of Scots pine needles during 3 years of growth at elevated $CO_2$ and elevated temperature. Plant Cell & Environment 26: 645-660. https://doi.org/10.1046/j.1365-3040.2003.01000.x
  38. Matias, L. and Jump, A.S. 2014. Impacts of predicted climate change on recruitment at the geographical limits of Scots pine. Journal of Experimental Botany 65(1): 299-310. https://doi.org/10.1093/jxb/ert376
  39. Matias, L., Zamora, R., and Castro, J. 2012. Rare rainy events are more critical than drought intensification for woody recruitment in Mediterranean mountains: a field experiment simulating climate change. Oecologia 169: 833-844. https://doi.org/10.1007/s00442-011-2234-3
  40. Milbau, A., Graae, B.J., Shevtsova, A., and Nijs, I. 2009. Effects of a warmer climate on seed germination in the subarctic. Annals of Botany 104(2): 287-296. https://doi.org/10.1093/aob/mcp117
  41. Morin, X., Roy, J., Sonie, L., and Chuine, I. 2010. Changes in leaf phenology of three European oak species in response to experimental climate change. New Phytologist 186(4): 900-910. https://doi.org/10.1111/j.1469-8137.2010.03252.x
  42. Morison, J.I.L. and Lawlor, D.W. 1999. Interactions between increasing $CO_2$ concentration and temperature on plant growth. Plant Cell & Environment 22: 659-682. https://doi.org/10.1046/j.1365-3040.1999.00443.x
  43. Nakamura, M., Muller, O., Tayanagi, S., Nakaji, T., and Hiura, T. 2010. Experimental branch warming alters tall tree leaf phenology and acorn production. Agricultural and Forest Meteorology 150(7-8): 1026-1029. https://doi.org/10.1016/j.agrformet.2010.04.001
  44. Perez-Garcia, F., Gonzalez-Benito, M.E., and Gomez-Campo, C. 2008. Germination of fourteen endemic species from the Iberian Peninsula, Canary and Balearic Islands after 32-34 years of storage at low temperature and very low water content. Seed Science and Technology 36(2): 407-422. https://doi.org/10.15258/sst.2008.36.2.14
  45. Peterjohn, W.T., Melillo, J.M., Steudler, P.A., Newkirk, K.M., Bowles, F.B., and Aber, J.D. 1994. Responses of trace gas fluxes and N availability to experimentally elevated temperatures. Ecological Applications 4(3): 617-625. https://doi.org/10.2307/1941962
  46. Rustad, L.E., Campbell, J.L., Marion, G.M., Norby, R.J., Mitchell, M.J., Hartley, A.E., Cornelissen, J.H.C., Gurevitch, J., and GCTE-NEWS. 2001. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126(4): 543-562. https://doi.org/10.1007/s004420000544
  47. SAS Institute Inc. 2000. SAS/STAT TM guide for personal computer. Version 8 edition. SAS Institute Inc., N.C. pp. 1026.
  48. Saxe, H., Ellsworth, D.S., and Heath, J. 1998. Tree and forest functioning in an enriched $CO_2$ atmosphere. New Phytologist 139: 395-436. https://doi.org/10.1046/j.1469-8137.1998.00221.x
  49. Scott, S.J., Jones, R.A., and Williams, W.A. 1984. Review of data analysis methods for seed germination. Crop Science 24: 1192-1199. https://doi.org/10.2135/cropsci1984.0011183X002400060043x
  50. Skordilis, A. and Thanos, C.A. 1995. Seed stratification and germination strategy in the Mediterranean pines Pinus brutia and P. halepensis. Seed Science Research 5(3): 151-160.
  51. Takemura, T., Hanagata, N., Sugihara, K., Baba, S., Karube, I., and Dubinsky, Z. 2000. Physiological and biochemical responses to salt stress in the mangrove, Bruguiera gymnorrhiza. Aquatic Botany 68(1): 15-28. https://doi.org/10.1016/S0304-3770(00)00106-6
  52. Teskey, R.O. 1997. Combined effects of elevated $CO_2$ and air temperature on carbon assimilation of Pinus taeda trees. Plant Cell & Environment 20: 373-380. https://doi.org/10.1046/j.1365-3040.1997.d01-75.x
  53. Thompson, L.J. and Naeem, S. 1996. The effects of soil warming on plant recruitment. Plant and Soil 182: 339-343.
  54. Thuiller, W., Albert, C., Araujo, M.B., Berry, P.M., Guisan, A., Hickler, T., Midgley, G.F., Paterson, J., Schurr, F.M., Sykes, M.T., and Zimmermann, N.E. 2008. Predicting global change impacts on plant species' distributions: Future challenges. Perspectives in Plant Ecology, Evolution and Systematics 9: 137-152. https://doi.org/10.1016/j.ppees.2007.09.004
  55. Tilki, F. and Dirik, H. 2007. Seed germination of three provenances of Pinus brutia (Ten.) as influenced by stratification, temperature and water stress. Journal of Environmental Biology 28(1): 133-136.
  56. Walck, J.L., Hidayati, S.N., Dixon, K.W., Thompson, K., and Poschilod, P. 2011. Climate change and plant regeneration from seed. Global Change Biology 17(6): 2145-2161. https://doi.org/10.1111/j.1365-2486.2010.02368.x
  57. Zhu, J., Kang, H., Tan, H., and Xu, M. 2006. Effects of drought stresses induced by polyethylene glycol on germination of Pinus sylvestris var. mongolica seeds from natural and plantation forests on sandy land. Journal of Forest Research 11(5): 319-328. https://doi.org/10.1007/s10310-006-0214-y

Cited by

  1. 온난화 처리가 신갈나무(Quercus mongolica)와 졸참나무(Q. serrate)의 종자발아와 생장에 미치는 영향 vol.52, pp.3, 2014, https://doi.org/10.11614/ksl.2019.52.3.210
  2. 실외 실험적 온난화 및 강수 처리에 따른 소나무와 낙엽송 유묘의 초기 생장 특성 vol.109, pp.1, 2020, https://doi.org/10.14578/jkfs.2020.109.1.31
  3. Early Growth Responses of Larix kaempferi (Lamb.) Carr. Seedling to Short-Term Extreme Climate Events in Summer vol.12, pp.11, 2014, https://doi.org/10.3390/f12111595