DOI QR코드

DOI QR Code

Isolation and Characterization of a Basic Leucine Zipper Gene in Poplar (Populus alba × P. glandulosa)

현사시나무에서 Basic Leucine Zipper 유전자의 분리와 특성 구명

  • Yoon, Seo-Kyung (Division of Forest Biotechnology, Korea Forest Research Institute) ;
  • Lee, Hyoshin (Division of Forest Tree Improvement, Korea Forest Research Institute) ;
  • Bae, Eun-Kyung (Division of Forest Tree Improvement, Korea Forest Research Institute) ;
  • Choi, Young-Im (Division of Forest Biotechnology, Korea Forest Research Institute) ;
  • Kim, Joon-Hyeok (Division of Forest Biotechnology, Korea Forest Research Institute) ;
  • Noh, Seol Ah (Division of Forest Biotechnology, Korea Forest Research Institute)
  • 윤서경 (국립산림과학원 산림생명공학과) ;
  • 이효신 (국립산림과학원 임목육종과) ;
  • 배은경 (국립산림과학원 임목육종과) ;
  • 최영임 (국립산림과학원 산림생명공학과) ;
  • 김준혁 (국립산림과학원 산림생명공학과) ;
  • 노설아 (국립산림과학원 산림생명공학과)
  • Received : 2014.01.09
  • Accepted : 2014.05.07
  • Published : 2014.06.30

Abstract

Basic leucine zipper (bZIP) protein is a regulatory transcription factor that plays crucial roles in growth, development and stress response of plant. In this study, we isolated a PagbZIP1 gene that belonged to Group SE3 of bZIP from Populus alba ${\times}$ P. glandulosa, and investigated its expressional characteristics. The PagbZIP1 is 844 base pairs long and encodes a putative 144-amino-acid protein with an expected molecular mass of 16.6 kDa. The PagbZIP1 has two conserved domains including the basic and leucine zipper portions. Southern blot analysis revealed that two copies of the gene are presented in the poplar genome. PagbZIP1 was specifically expressed in the root and suspension cells. Moreover, the expression of PagbZIP1 was induced by drought, salt, cold and ABA. Therefore, our results indicated that PagbZIP1 might be expressed in response to abiotic stress through the ABA-mediated signaling pathway in poplar.

Basic leucine zipper(bZIP) 단백질은 식물의 성장과 발달 그리고 스트레스 반응을 조절하는 전사인자이다. 본 연구에서는 현사시나무(Populus alba ${\times}$ P. glandulosa)에서 SE3 그룹에 속하는 bZIP인 PagbZIP1 유전자를 분리하여 구조와 발현 특성 등을 조사하였다. 현사시나무의 PagbZIP1 유전자는 844개의 염기쌍으로 이루어져 있으며, 144개의 아미노산으로 구성되는 예상 분자량 16.6 kDa의 단백질을 암호화한다. PagbZIP1은 보존영역인 basic domain과 leucine zipper domain을 가지고 있으며, 현사시나무의 염색체에 2 copy가 존재하는 것으로 나타났다. PagbZIP1은 현사시나무의 뿌리와 배양세포에서 특이적으로 발현하며, 배양세포의 생장주기에서는 정지기에 높게 발현하였다. 또한 건조와 염 그리고 저온 스트레스 뿐 아니라 식물호르몬인 ABA 처리에 의해서도 발현이 유도되어, ABA를 경유한 신호전달경로를 따라 유전자 발현을 조절하는 것으로 판단되었다. 본 연구결과는 PagbZIP1 유전자의 도입과 발현조절을 통한 바이오매스 증진 및 스트레스 내성 나무의 개발에 도움을 줄 것으로 생각된다.

Keywords

References

  1. Atkinson, N.J. and Urwin, P.E. 2012. The interaction of plant biotic and abiotic stresses: from genes to the field. Journal of Experimental Botany 63: 3523-3543. https://doi.org/10.1093/jxb/ers100
  2. Ballen-Taborda, C., Plata, G., Ayling, S., Rodriguez-Zapata, F., Lopez-Lavalle, L.A.B., Duitama, J., and Tohme, J. 2013. Identification of Cassava microRNAs under abiotic stress. International Journal of Genomics 10: 857-986.
  3. Correa, L.G.G., Riano-Pachon, D.M., Schrago, C.G., Santos, R.V., Mueller-Roeber, B. and Vincentz, M. 2008. The role of bZIP transcription factors in green plant evolution: Adaptive features emerging from four founder genes. PLoS ONE 3: e2944. https://doi.org/10.1371/journal.pone.0002944
  4. Chen, H., Chen, W., Zhouc J., Heb, H., Chen, L., Chen, H., and Deng, X.W. 2012. Basic leucine zipper transcription factor OsbZIP16 positively regulates drought resistance in rice. Plant Science 193-194: 8-17. https://doi.org/10.1016/j.plantsci.2012.05.003
  5. Choi, Y.I., Noh, E.W., Han, M.S. and Yi, Y.S. 2001. Estimation of cellular damages caused by paraquat and lead using a cell culture system. Journal of Plant Biotechnology 3: 83-88.
  6. Gao, S.Q., Chen, M., Xu, Z.S., Zhao, C.P., Li, L., Xu, H.J., Tang, Y.M., Zhao, X. and Ma, Y.Z. 2011. The soybean GmbZIP1 transcription factor enhances multiple abiotic stress tolerances in transgenic plants. Plant Molecular Biology 75: 537-553. https://doi.org/10.1007/s11103-011-9738-4
  7. Golldack, D., Luking, I., and Yang, O.S. 2011. Plant tolerance to drought and salinity: stress regulating transcription factors and their functional significance in the cellular transcriptional network. Plant Cell Reports 30: 1383-1391. https://doi.org/10.1007/s00299-011-1068-0
  8. Gong, P., Zhang, J., Li, H., Yang, C., Zhang, C., Zhang, X., Khurram, Z., Zhang, Y., Wang, T., Fei, Z., and Ye, Z. 2010. Transcriptional profiles of drought-responsive genes in modulating transcription signal transduction, and biochemical pathways in tomato. Journal of Experimental Botany 61: 3563-3575. https://doi.org/10.1093/jxb/erq167
  9. Hosseini, R. and Mulligan, B.J. 2001. Application of rice (Oryza sativa L.) suspension culture in studying senescence in vitro (I). Single strand preferring nuclease activity. Electronic Journal of Biotechnology 5: 1-13.
  10. Hulo, N., Bairoch, A., Bulliard, V., Ceruttil, L., Castro, E.D., Langenkijk-Genevaux, P.S., Pagnil, M., and Sigrist, C.J.A. 2006. The PROSITE database. Nucleic Acids Research 34: 227-230. https://doi.org/10.1093/nar/gkj063
  11. Jakoby, M., Droge-Laser, W., Vicente-Carbafosa, J., Tiedemann, J., and Kroj, T. 2002. bZIP transcription factors in Arabidopsis. Trends in Plant Science 7: 106-111. https://doi.org/10.1016/S1360-1385(01)02223-3
  12. Jaradat, M.R., Feurtado, J.A., Huang, D., Lu, Y., and Cutler, A.J. 2013. Multiple roles of the transcription factor AtMYBR1/AtMYB44 in ABA signaling, stress responses, and leaf senescence. BMC Plant Biology 13: 192. https://doi.org/10.1186/1471-2229-13-192
  13. Jeong, S., Volny, M., and Lukowitz, W. 2012. Axis formation in Arabidopsis-transcription factors tell their side of the story. Current Opinion in Plant Biology 15: 4-9. https://doi.org/10.1016/j.pbi.2011.10.007
  14. Kirchler, T., Briesemeister, S., Singer, M., Schutze, K., Keinath, M., Kohlbacher, O., Vicente-Carbajosa, J., Teige, M., Harter, K., and Chaban, C. 2010. The role of phosphorylatable serine residues in the DNA-binding domain of Arabidopsis bZIP transcription factors. European Journal of Cell Biology 89: 175-183. https://doi.org/10.1016/j.ejcb.2009.11.023
  15. Kobayashi, F., Maeta, E., Terashima, A., Kawaura, K., Ogihara, Y., and Takumi, S. 2008. Development of abiotic stress tolerance via bZIP-type transcription factor LIP19 in common wheat. Journal of Experimental Botany 59: 891-905. https://doi.org/10.1093/jxb/ern014
  16. Lee, H.S., Lee, J.S., Noh, E.W., Bae, E.K., Choi, Y.I., and Han, M.S. 2005. Generation and analysis of expressed sequence tags from poplar (Populus alba ${\times}$ P. tremula var. glandulosa) suspension cells. Plant science 169: 1118-1124. https://doi.org/10.1016/j.plantsci.2005.07.013
  17. Lee, H., Bae, E.K., Park, S.Y., Sjodin, A., Lee, J.S., Noh, E.W., and Jansson, S. 2007. Growth-phase-dependent gene expression profiling of poplar (Populus alba ${\times}$ P. tremula var. glandulosa) suspension cells. Physiologia Plantarum 131: 599-613. https://doi.org/10.1111/j.1399-3054.2007.00987.x
  18. Legendre, L., Rueter, S., Heinstein, P.F., and Low, P.S. 1993. Characterization of the oligogalacturonide-induced oxidative burst in cultured soybean (Glycine max) cells. Plant Physiology 102: 233-240. https://doi.org/10.1104/pp.102.1.233
  19. Lindemose, S., O'Shea, C., Jensen, M.K., and Skriver, K. 2013. Structure, function and networks of transcription factors involved in abiotic stress responses. International Journal of Molecular Sciences 14: 5842-5878. https://doi.org/10.3390/ijms14035842
  20. Luo, M., Liu, J., Lee, R.D., Scully, B.T., and Guo, B. 2010. Monitoring the expression of Maize genes in developing kernels under drought stress using oligo-microarray. Journal of Integrative Plant Biology 52: 1059-1074. https://doi.org/10.1111/j.1744-7909.2010.01000.x
  21. Moore, J.W., Loake, G.J., and Spoel, S.H. 2011. Transcription dynamics in plant immunity. Plant Cell. 23: 2809-2820. https://doi.org/10.1105/tpc.111.087346
  22. Riano-Pachon, D.M., Ruzicic, S., Dreyer, I., and Mueller-Roeber, B. 2007. PlnTFDB: an integrative plant transcription factor database. BMC Bioinformatics 8: 42. https://doi.org/10.1186/1471-2105-8-42
  23. Rodriguez-Uribe, L. and O'Connell, M.A. 2006. A root-specific bZIP transcription factor is responsive to water deficit stress in tepary bean (Phaseolus acutifolius) and common bean (P. vulgaris). Journal of Experimental Botany 6: 1391-1398.
  24. Schutze, K., Harter, K., and Chaban, K. 2008. Post-translational regulation of plant bZIP factors. Trends in Plant Science 13: 247-255. https://doi.org/10.1016/j.tplants.2008.03.002
  25. Shinozaki, K. and Yamaguchi-Shinozaki, K. 2007. Gene networks involved in drought stress response and tolerance. Journal of Experimental Botany 58: 221-227.
  26. Vincentz, M.G.A., Bandeira-Kobarg, C., Gauer, L., Schlogl, P., and Leite, A. 2003. Evolutionary pattern of angiosperm bZIP factors homologous to the maize Opaque-2 regulatory protein. Journal of Molecular Evolution 55: 1-12.
  27. Wang, C., Wei, Q., Zhang, K., Wang, L., Liu, F., Zhao, L., Tan, Y., Di, C., Yan, H., Yu, J., Sun, C., Chen, W.J., Xu, W., and Su, Z. 2013. Down-regulation of OsSPX1 causes high sensitivity to cold and oxidative stresses in rice seedlings. PLoS One 8: e81849. https://doi.org/10.1371/journal.pone.0081849
  28. Xu, Z.Y., Kim, S.Y., Hyeon, D.Y., Kim, D.H., Dong, T., Park, Y., Jin, J.B., Joo, S.H., Kim, S.K., Hong, J.C., Hwang, D., and Hwang, I. 2013. The arabidopsis NAC transcription factor ANAC096 cooperates with bZIP-type transcription factors in dehydration and osmotic stress responses. Plant Cell 25: 4708-4724. https://doi.org/10.1105/tpc.113.119099
  29. Ying, S., Zhang, D.F., Fu, J., Shi, Y.S., Song, Y.C., Wang, T.Y., and Li, Y. 2012. Cloning and characterization of a maize bZIP transcription factor, ZmbZIP72, confers drought and salt tolerance in transgenic arabidopsis. Planta 235: 253-266. https://doi.org/10.1007/s00425-011-1496-7