DOI QR코드

DOI QR Code

삼나무 조림지의 임분밀도에 따른 상대생장식과 현존량 확장계수

Allometric Equations and Biomass Expansion Factors by Stand Density in Cryptomeria japonica Plantations

  • 권정화 (경상남도 산림환경연구원) ;
  • 서희영 (경남과학기술대학교 산림자원학과) ;
  • 이광수 (국립산림과학원 남부산림자원연구소) ;
  • 유병오 (국립산림과학원 남부산림자원연구소) ;
  • 박용배 (국립산림과학원 남부산림자원연구소) ;
  • 정재엽 (남호주대학교) ;
  • 김춘식 (경남과학기술대학교 산림자원학과)
  • Gwon, Jung-Hwa (Gyeongsangnamdo Forest Environment Research Institute) ;
  • Seo, Huiyeong (Department of Forest Resources, Gyeongnam National University of Science and Technology) ;
  • Lee, Kwang-Soo (Southern Forest Resource Research Center, Korea Forest Research Institute) ;
  • You, Byung-Oh (Southern Forest Resource Research Center, Korea Forest Research Institute) ;
  • Park, Yong-Bae (Southern Forest Resource Research Center, Korea Forest Research Institute) ;
  • Jeong, Jaeyeob (CERAR, University of South Australia) ;
  • Kim, Choonsig (Department of Forest Resources, Gyeongnam National University of Science and Technology)
  • 투고 : 2014.02.11
  • 심사 : 2014.03.26
  • 발행 : 2014.06.30

초록

경상남도 남해군의 유사한 입지환경에서 생육한 삼나무 조림지를 대상으로 47년생의 고밀도임분($667tree{\cdot}ha^{-1}$)과 49년생의 저밀도임분($267tree{\cdot}ha^{-1}$)으로 구분한 후 임분밀도에 따른 상대생장식과 현존량 확장계수를 비교하였다. 흉고직경을 독립변수로 하고 각 부위별 건중량을 종속변수로 하는 상대생장식은 고밀도임분의 가지, 저밀도임분의 잎과 종실을 제외하고 상대생장식의 유의성이 인정되었으며(P<0.05), 결정계수($R^2$)의 값은 0.80-0.96 범위였다. 또한 각 임분밀도에 대한 상대생장식(stand density-specific allometric equations)의 회귀계수(slope)에 유의적인 차가 없어(P>0.05), 일괄 상대생장식(generalized allometric equations)의 적용이 가능한 것으로 나타났다. 그러나 현존량 확장계수는 고밀도임분 1.33, 저밀도임분 1.50으로 임분밀도 간 유의적인 차가 있었다(P<0.05). 성숙한 삼나무 조림지의 바이오매스 추정을 위한 상대생장식의 경우 임분밀도의 영향이 크지 않으나 현존량 확장계수의 경우 임분밀도에 따라 상당한 차이가 있었다.

This study was conducted to evaluate stand density-specific and generalized allometric equations, and biomass expansion factors (BEFs) for two stand densities (high density of 47-year-old: $667tree{\cdot}ha^{-1}$; low density of 49-year-old: $267tree{\cdot}ha^{-1}$) of Cryptomeria japonica plantations in Namhae-gun, located in the southern Korea. Biomass in each tree component, i.e. foliage, branch, and stem, was quantified by destructive tree harvesting. Allometric regression equations of each tree component were significant (P<0.05) with diameter at breast height (DBH) accounting for 80-96% of the variation except for branch biomass in high density or foliage and cone biomass in low density. Generalized allometric equations can be used to estimate the biomass of C. japonica plantations because the slopes of allometric equations were not significantly different by the stand density. The biomass expansion factors (BEFs) were significantly lower in the high stand density (1.33) than in the low stand density (1.50). The results indicate that BEFs were affected by different stand density, while allometric equations were little related to the stand density.

키워드

참고문헌

  1. Bravo, F., LeMay, V., Jandl, R., and Gadow, K. 2008. Managing Forest Ecosystem: The challenge of climate change. Springer, pp. 338.
  2. Fatemi, F.R., Yanai, R.D., Hamburg, S.P., Vadeboncoeur, M.A., Arthur, M.A., Briggs, R.D., and Levine, C.R. 2011. Allometric equations for young northern hardwoods: the importance of age-specific equations for estimating aboveground biomass. Canadian Journal of Forest Research 41: 881-891. https://doi.org/10.1139/x10-248
  3. Fukuda, M., Iehara, T., and Matsumato, M. 2003. Carbon stock estimates for sugi and hinoki forests in Japan. Forest Ecology and Management 184: 1-16. https://doi.org/10.1016/S0378-1127(03)00146-4
  4. IPCC. 2003. Good practice guidance for land use, land-use change and forestry. IGES, Kanagawa, Japan.
  5. Jeong, J., Cho, H.J., Seo, J.H., Kim, R.H., Son, Y.M., Lee, K.H., and Kim, C. 2010. Aboveground biomass estimation of Pinus densiflora stands in the western Gyeongnam regions. Journal of Korean Forestry Society 99: 62-67.
  6. Jin, H.O. 1991. Nutrient environment of Japanese cedar (Cryptomeria japonica) I. Changes of soil chemical properties in grassland afforestation. Journal of Korean Soil Science and Fertilizer 24: 177-182.
  7. Kim C., Lee, J.S., and Cho, K.J. 1987. Biomass and net production of Cryptomeria japonica and Chamaecyparis obtusa plantation in Changsong district, Chonnam. Journal of Korea Forest Energy 7(1): 1-10.
  8. Kim, C., Jeong, J., Kim, R.H., Son, Y.M., Lee, K.H., Kim, J.S., and Park I.H. 2011a. Allometric equations and biomass expansion factors of Japanese red pine on the local level. Landscape and Ecological Engineering 7: 283-289. https://doi.org/10.1007/s11355-010-0131-2
  9. Kim, C.M., Chung, Y.K,, Kim, D.H., and Son, Y.M. 2011b. Biomass production and carbon factor development for Cryptomeria japonica in Jeju island. Proceeding of Forest Science Conference at 2011. Gyeongju, pp. 1085-1087.
  10. Kim, C., Lee, K.S., Son, Y.M., and CHo, H.S. 2013. Allometric equations and biomass expansion factors in a agesequence of black pine (Pinus thunbergii) stands. Journal of Korean Forest Society 102 (4): 543-549. https://doi.org/10.14578/jkfs.2013.102.4.543
  11. Konopka, H. Tsukahara, H., and Netsu, A. 2000. Biomass distribution in 40-year-old trees of Japanese black pine. Journal of Forest Research 5: 163-168. https://doi.org/10.1007/BF02762396
  12. Korea Forest Research Institute. 2010. Survey Manual for Biomass and Soil Carbon. pp. 60.
  13. Lehtonen, A., Makipaa, R. Heikkinen, J., Sievanen, R., and Liski, J. 2004. Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. Forest Ecology and Management 188: 211-224. https://doi.org/10.1016/j.foreco.2003.07.008
  14. Lee, J.S. 1985. The study of forest vegetation in Cryptomeria japonica D. Don plantations. Journal of Korean Forest Society 69: 42-50.
  15. Lee, S.H. 2003. Development of site index equation and curves for Cryptomeria japonica. Journal of Korean Forest Society 92: 152-159.
  16. Lim, H., Lee, K.H., Lee, K.H., and Park, I.H. 2013. Biomass expansion factors and allometric equations in an age sequence for Japanese cedar (Cryptomeria japonica) in southern Korea. Journal of Forest Research 18: 316-322. https://doi.org/10.1007/s10310-012-0353-2
  17. Milliken, G.A. and Johnson, D.E. 2002. Analysis of Messy Data. Volume III: Analysis of Covariance. Chapman & Hall/CRC. pp. 605.
  18. Park, I.H., Park, M.S., Lee, K.H., Son, Y.M., Seo, J.H., Son, Y., and Lee, Y.J. 2005. Biomass expansion factors for Pinus densiflora in relation to ecotype and stand age. Journal of Korean Forestry Society 94: 441-445.
  19. Peichl, M. and Arain, M.A. 2007. Allometry and partitioning of above- and belowground tree biomass in an agesequence of white pine forests. Forest Ecology and Management 253: 68-80. https://doi.org/10.1016/j.foreco.2007.07.003
  20. SAS Institute Inc. 2003. SAS/STAT Statistical Software. Version 9.1 SAS publishing Cary, NC.
  21. Seo, Y.O., and Lee, Y.J. 2013. Estimation of above- and belowground biomass with consideration of age classes for Cryptomeria japonica stands. Journal of Agriculture & Life Science 47: 17-23.
  22. Son, Y. Hwang, J.W., Kim, Z.S., Lee, W.K., and Kim, J.S. 2001. Allometry and biomass of Korean pine (Pinus koraiensis) in central Korea. Bioresource Technology 78: 251-255. https://doi.org/10.1016/S0960-8524(01)00012-8
  23. Teobaldelli, M., Somogyi, Z., Migliavacca, M., and Usoltsev, V. 2009. Generalized functions of biomass expansion factors for conifers and broadleaved by stand age, growing stock and site index. Forest Ecology and Management 257: 1004-1013. https://doi.org/10.1016/j.foreco.2008.11.002
  24. Tobin, B. and Nieuwenhuis, M. 2007. Biomass expansion factors for Sitka spruce (Picea sitchensis (Bong.) Carr.) in Ireland. European Journal of Forest Research 126: 189-196. https://doi.org/10.1007/s10342-005-0105-3
  25. Whittaker, R.H., Bormann, F.H., Likens, G.E., and Siccama, T.G. 1974. The Hubbard Brook ecosystem study: forest biomass and production. Ecological Monograph 44: 233-252. https://doi.org/10.2307/1942313

피인용 문헌

  1. Mechanical Properties of Cryptomeria japonica by the Differences of Stand Characteristics in Southern Region of Korea vol.43, pp.3, 2015, https://doi.org/10.5658/WOOD.2015.43.3.320
  2. 삼나무와 편백 임분의 임목, 임상, 토양의 탄소량 비교 vol.109, pp.2, 2014, https://doi.org/10.14578/jkfs.2020.109.2.169