DOI QR코드

DOI QR Code

Open-field Experimental Warming and Precipitation Manipulation System Design to Simulate Climate Change Impact

기후변화 영향 모의를 위한 실외 실험적 온난화 및 강수 조절 시스템 설계 연구

  • Yun, Soon Jin (Department of Environmental Science and Ecological Engineering, Graduate School, Korea University) ;
  • Han, Saerom (Department of Environmental Science and Ecological Engineering, Graduate School, Korea University) ;
  • Han, Seung Hyun (Department of Environmental Science and Ecological Engineering, Graduate School, Korea University) ;
  • Lee, Sun Jeoung (Center for Forest and Climate Change, Korea Forest Research Institute) ;
  • Jung, Yejee (Department of Environmental Science and Ecological Engineering, Graduate School, Korea University) ;
  • Kim, Seoungjun (Department of Environmental Science and Ecological Engineering, Graduate School, Korea University) ;
  • Son, Yowhan (Department of Environmental Science and Ecological Engineering, Graduate School, Korea University)
  • 윤순진 (고려대학교 대학원 환경생태공학과) ;
  • 한새롬 (고려대학교 대학원 환경생태공학과) ;
  • 한승현 (고려대학교 대학원 환경생태공학과) ;
  • 이선정 (국립산림과학원 기후변화연구센터) ;
  • 정예지 (고려대학교 대학원 환경생태공학과) ;
  • 김성준 (고려대학교 대학원 환경생태공학과) ;
  • 손요환 (고려대학교 대학원 환경생태공학과)
  • Received : 2014.01.21
  • Accepted : 2014.04.23
  • Published : 2014.06.30

Abstract

The objective of this study was to establish an open-field experimental warming treatment and precipitation manipulation system to simulate climate change impact for Pinus densiflora seedlings based on a climate change scenario in Korea. Two-year-old seedlings were planted in a nursery in April, 2013. The air temperature of warmed plots (W) was set to increase by $3.0^{\circ}C$ compared to control plots (C) using infrared lamps from May, 2013. The three precipitation manipulation consisted of precipitation decrease using transparent panel (-30%; $P^-$), precipitation increase using pump and drip-irrigation (+30%; $P^+$) and precipitation control (0%; $P^0$). Initially, the air temperature was $2.2^{\circ}C$ higher in warmed plots than in control plots and later air temperature was maintained close to the target temperature of $3.0^{\circ}C$. The average soil temperature was $3.1^{\circ}C$ higher in warmed plots than in control plots. Also the average soil moisture content after the precipitation manipulation increased by 13.9% in $P^+W$ and decreased by 10.0% in $P^-W$ compared to $P^0W$, and increased by 23.7% in $P^+C$ and decreased by 7.6% in $P^-C$ compared to $P^0C$. It was confirmed that the open-field experimental warming and precipitation manipulation system was properly designed and operating.

소나무 묘목을 대상으로 한반도 기후변화 시나리오에 근거한 50년 후 온도 $3^{\circ}C$ 증가와 강수량 30% 변화의 영향을 모의하고자 실외에서 온난화 처리와 강수 조절을 수행할 수 있는 시스템을 설계하였다. 이를 위하여 2013년 4월에 묘포장을 조성하고 2년생 소나무 묘목을 식재한 다음 5월부터 적외선등을 이용하여 온난화 처리구(W)의 대기온도를 대조구(C)에 비하여 $3.0^{\circ}C$ 높게 설정하여 가열하였으며, 강수 대조구($P^0$)와 강수 차단 덮개를 이용한 강수 감소(대조구 대비 -30%; $P^-$) 조절, 그리고 펌프와 점적관수를 통한 강수 증가(대조구 대비 +30%; $P^+$) 조절을 실행하였다. 온난화 처리구의 대기 온도는 초기에 대조구에 비하여 평균 $2.2^{\circ}C$ 높았으나 이후 점차 목표치에 근접한 $3.0^{\circ}C$로 유지되었다. 또한 온난화 처리에 따른 평균 토양 온도는 온난화 처리구에서 대조구보다 평균 $3.1^{\circ}C$ 높게 나타났다. 강수 증가 및 감소 조절에 따른 평균 토양 수분 함량은 온난화 처리구에서 $P^0W$에 비하여 $P^+W$는 13.9% 증가하고, $P^-W$는 10.0% 감소하였으며, 온난화 대조구 중에서 $P^+C$는 23.7% 증가하고, $P^-C$는 7.6% 감소하였다. 환경요인의 모니터링을 통하여 실외 실험적 온난화와 강수 조절 시스템이 적정하게 설계되고 가동됨을 확인할 수 있었다.

Keywords

References

  1. Bardgett, R.D., Freeman, C., and Ostle, N.J. 2008. Microbial contributions to climate change through carbon cycle feedbacks. International Society for Microbial Ecology 2(8): 805-814.
  2. Byun, J., Lee, W., Nor, D., Kim, S., Choi, J., and Lee, Y. 2010. The relationship between tree radial growth and topographic and climate factors in red pine and oak in central regions of Korea. Journal of Korean Forest Society 99(6): 908-913 (in Korean).
  3. Chung, H., Muraoka, H., Nakamura, M., Han, S., Muller, O., and Son, Y. 2013. Experimental warming studies on tree species and forest ecosystems. Journal of Plant Research 126(4): 447-460. https://doi.org/10.1007/s10265-013-0565-3
  4. Fay, P.A., Kaufman, D.M., Nippert, J.B., Carlisle, J.D., and Harper, C.W. 2008. Changes in grassland ecosystem function due to extreme rainfall events: implications for responses to climate change. Global Change Biology 14(7): 1600-1608. https://doi.org/10.1111/j.1365-2486.2008.01605.x
  5. Harte, J., Torn, M.S., Chang, F.R., Feifarek, B., Kinzig, A.P., Shaw, R., and Shen, K. 1995. Global warming and soil microclimate: results from a meadow-warming experiment. Ecological Applications 5(1): 132-150. https://doi.org/10.2307/1942058
  6. Intergovernmental Panel on Climate Change (IPCC). 2007. Summary for policymakers, in climate change 2001: The scientific basis. contribution of the working group I to the third assessment report of the intergovernmental panel on climate change, Cambridge Univ. Press, New York.
  7. Jo, W., Son, Y., Chung, H., Noh, N.J., Yoon, T.K., Han, S., Lee, S.J., Lee, S.K., Yi, K., and Jin, L. 2011. Effect of artificial warming on chlorophyll contents and net photosynthetic rate of Quercus variabilis seedlings in an openfield experiment. Journal of Korean Forest Society 100(4): 733-737 (in Korean).
  8. Kimball, B.A. and Conley, M.M. 2009. Infrared heater arrays for warming field plots scaled up to 5-m diameter. Agricultural and Forest Meteorology 149(3-4): 721-724. https://doi.org/10.1016/j.agrformet.2008.09.015
  9. Kimball, B.A., Conley, M.M., Wang, S., Lin, X., Luo, C., Morgan, J., and Smith, D. 2008. Infrared heater arrays for warming ecosystem field plots. Global Change Biology 14(2): 309-320.
  10. Korea Forest Service. 2011. Statistical yearbook of forestry. Korea Forest Service, Daejeon (in Korean), pp. 32.
  11. Lee, S.J., Han, S., Yoon, T.K., Chung, H., Noh, N.J., Jo, W., Park, C., Ko, S., Han, S.H., and Son, Y. 2012. Effects of experimental warming on growth of Quercus variabilis seedlings. Journal of Korean Forest Society 101(4): 722-728 (in Korean).
  12. Lee, S.J., Han, S., Yoon, T.K., Jo, W., Han, S.H., Jung, Y., and Son, Y. 2013. Changes in chlorophyll contents and net photosynthesis rate of 3-year-old Quercus variabilis seedlings by experimental warming. Journal of Korean Forest Society 102(1): 156-160 (in Korean). https://doi.org/10.14578/jkfs.2013.102.1.156
  13. Liu, W., Zhang, Z., and Wan, S. 2009. Predominant role of water in regulating soil and microbial respiration and their responses to climate change in a semiarid grassland. Global Change Biology 15(1): 184-195. https://doi.org/10.1111/j.1365-2486.2008.01728.x
  14. Luo, Y., Gerten, D., Le Maire, G., Parton, W.J., Weng, E., Zhou, X., Keough, C., Beier, C., Ciais, P., Cramer, W., Dukes, J.S., Emmett, B., Hanson, P.J., Knapp, A., Linder, S., Nepstad, D., and Rustad, L. 2008. Modeled interactive effects of precipitation, temperature, and $CO_2$ on ecosystem carbon and water dynamics in different climatic zones. Global Change Biology 14(9): 1986-1999. https://doi.org/10.1111/j.1365-2486.2008.01629.x
  15. Rustad, L.E. 2008. The response of terrestrial ecosystems to global climate change: towards an integrated approach. Science of the Total Environment 404(2-3): 222-235. https://doi.org/10.1016/j.scitotenv.2008.04.050
  16. Rustad, L.E., Campbell, J.L., Marion, G.M., Norby, R.J., Mitchell, M.J., Hartley, A.E., Cornelissen, J.H.C., Gurevitch, J., and GCTE-NEWS. 2001. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126(4): 543-562. https://doi.org/10.1007/s004420000544
  17. SAS Institute Inc. 2009. SAS/STAT(R) 9.2 User's Guide. SAS Institute Inc., Cary.
  18. Sherman, C., Stemberg, M., and Steinberger, Y. 2012. Effects of climate change on soil respiration and carbon processing in mediterranean and semi-arid regions: an experimental approach. European Journal of Soil Biology 52: 48-58. https://doi.org/10.1016/j.ejsobi.2012.06.001
  19. Tharayil, N., Suseela, V., Triebwasser, D.J., Preston, C.D., Gerard, P.D., and Dukes, J.S. 2011. Changes in the structural composition and reactivity of Acer rubrum leaf litter tannins exposed to warming and altered precipitation: climatic stress-induced tannins are more reactive. New Phytologist 191(1): 132-145. https://doi.org/10.1111/j.1469-8137.2011.03667.x
  20. Wu, Z., Dijkstra, P., Koch, G.W., Penuelas, J., and Hungate, B.A. 2011. Responses of terrestrial ecosystems to temperature and precipitation change: a meta-analysis of experimental manipulation. Global Change Biology 17(2): 927-942. https://doi.org/10.1111/j.1365-2486.2010.02302.x
  21. Xia, Y., Chen, S., and Wan, S. 2010. Impacts of day versus night warming on soil microclimate: Results from a semiarid temperate steppe. Science of the Total Environment 408(14): 2807-2816. https://doi.org/10.1016/j.scitotenv.2010.03.016
  22. Zhou, X., Chen, C., Wang, Y., Xu, Z., Han, H., Li, L., and Wan, S. 2013. Warming and increased precipitation have differential effects on soil extracellular enzyme activities in a temperate grassland. Science of the Total Environment 444(1): 552-558. https://doi.org/10.1016/j.scitotenv.2012.12.023

Cited by

  1. Effect of Soil Moisture on the Response of Soil Respiration to Open-Field Experimental Warming and Precipitation Manipulation vol.8, pp.3, 2017, https://doi.org/10.3390/f8030056
  2. Short-Term Effects of Experimental Warming and Precipitation Manipulation on Soil Microbial Biomass C and N, Community Substrate Utilization Patterns and Community Composition vol.27, pp.4, 2017, https://doi.org/10.1016/S1002-0160(17)60408-9
  3. Short-term effects of warming treatment and precipitation manipulation on the ecophysiological responses of Pinus densiflora seedlings vol.40, pp.13036173, 2016, https://doi.org/10.3906/tar-1511-68
  4. Effects of Warming and Precipitation Manipulation on Fine Root Dynamics of Pinus densiflora Sieb. et Zucc. Seedlings vol.9, pp.1, 2017, https://doi.org/10.3390/f9010014
  5. Warming results in advanced spring phenology, delayed leaf fall, and developed abnormal shoots in Pinus densiflora seedlings vol.32, pp.5, 2018, https://doi.org/10.1007/s00468-018-1709-9
  6. 인위적 온난화 및 강수 조절에 따른 소나무 묘목 세근 생산량과 고사율의 계절적 변화 vol.107, pp.1, 2014, https://doi.org/10.14578/jkfs.2018.107.1.43
  7. Relationship between Soil Water and Physiological and Growth Responses of Pinus densiflora Seedlings under Open-field Experimental Warming and Precipitation Manipulation vol.10, pp.2, 2019, https://doi.org/10.15531/ksccr.2019.10.2.145
  8. Experimental Throughfall Exclusion Studies on Forest Ecosystems: A Review vol.35, pp.4, 2014, https://doi.org/10.7747/jfes.2019.35.4.213