DOI QR코드

DOI QR Code

Measurement and Comparison of Overall Heat Transfer Coefficients for Greenhouse Covering Materials with Thermal Screens

온실용 피복재 및 보온재의 관류열전달계수 측정 및 비교

  • Diop, Souleymane (Department of Agricultural Engineering, Kyungpook National University) ;
  • Lee, Jong Won (Department of Agricultural Engineering, Kyungpook National University) ;
  • Lee, Hyun Woo (Department of Agricultural Engineering, Kyungpook National University)
  • Received : 2014.06.02
  • Accepted : 2014.07.15
  • Published : 2014.07.31

Abstract

천공복사를 구현할 수 있는 관류열전달계수 측정용 실내실험장치를 제작하고 국내에서 사용되고 있는 온실 피복재 및 보온재의 관류열전달계수를 측정하여 실외실험에서 측정된 결과와 비교하여 타당성을 평가하였다. 외부피복은 0.1 mm 두께의 폴리에틸렌 필름을 사용하여 일중 및 이중피복으로 처리하였다. 이중외부피복조건의 경우 4가지 종류의 보온재를 처리하여 총 6가지 피복처리에 대하여 실험을 실시하였다. 모든 피복처리조건에 대하여 야간복사 유무에 따른 관류열전달계수 측정실험이 수행되었다. 천공복사의 유무에 따라 온실피복재의 관류열전달계수의 변화 경향이 크게 차이가 있었기 때문에 실내실험을 통해 관류열전달계수를 측정하기 위해서는 반드시 실제의 천공복사를 구현할 수 있는 실험장치가 필요할 것으로 판단된다. 실내 실험결과와 실외 실험결과가 비교적 잘 일치하였으며 실내실험장치를 이용하여 관류열전달계수를 측정하는 것이 타당성이 있음을 확인할 수 있었다. 천공복사 유무에 따른 관류열전달계수의 차이는 핫박스 내외부의 온도차이가 증가함에 따라 감소하는 것으로 나타났다.

Keywords

References

  1. Abdel-Ghany A.M., and T. Kozai. 2006. On the determination of the overall heat transmission coefficient and soil heat flux for a fog cooled, naturally ventilated greenhouse: analysis of radiation and convection heat transfer. Energy Conversion and Management 47: 2612-2628. https://doi.org/10.1016/j.enconman.2005.10.024
  2. Albright, L.D., I. Seginer, L.S. Marsh, and A. Oko, 1985. In situ thermal calibration of unventilated greenhouse. J. agric. Engng Res. 31: 265-281. https://doi.org/10.1016/0021-8634(85)90093-9
  3. Bailey, B. J., and Z. S. Chalabi, 1994. Improving the cost effectiveness of greenhouse climate control. Computers and Electronics in Agriculture 10: 203-214. https://doi.org/10.1016/0168-1699(94)90041-8
  4. Baille, A., J. C. Lopez, S. Bonachela, M. M. Gonzalez-Real, and J. I. Montero, 2006. Night energy balance in a heated low-cost plastic greenhouse. Agricultural and Forest Meteorology 137: 107-118. https://doi.org/10.1016/j.agrformet.2006.03.008
  5. Diop, S., 2013. Development of measuring system of the overall heat transfer coefficient of greenhouse covering materials with thermal screens. Ph.D. diss., Kyungpook National University.
  6. Diop, S., J. W. Lee, W. H. Na, and H. W. Lee, 2012. Overall heat transfer coefficient measurement of covering materials with thermal screens for greenhouse using the hot box method. Journal of the Korean Society of Agriculture Engineers 54(5): 1-7. https://doi.org/10.5389/KSAE.2012.54.5.001
  7. Duffie J.A and W.A. Beckman, 1981. Solar engineering of thermal processes. Wiley Interscience Publication, New York.
  8. Feuilloley, P., and G. Issanchou, 1996. Greenhouse covering materials measurement and modeling of thermal properties using the hot box method, and condensation effects. J. agric. Engng Res. 65: 129-142. https://doi.org/10.1006/jaer.1996.0085
  9. Garzoli, K.V., and J. Blackwell, 1987. An analysis of the nocturnal heat loss from a double skin plastic greenhouse. J. agri. Engng Res. 36: 75-85.
  10. Geoola, F., Y. Kashti, A. Levi, and R. Brickman, 2009. A study of the overall heat transfer coefficient of greenhouse cladding materials with thermal screen using the hot box method. Polymer Testing 28: 470-474. https://doi.org/10.1016/j.polymertesting.2009.02.006
  11. Hanan, J.J., 1998. Greenhouse advanced technology for protected horticulture. CRC Press, New York.
  12. Lee, H. W., J. W. Lee, and S. Diop, 2013. Measuring system of the overall heat transfer coefficient of greenhouse covering materials with thermal. Magazine of the Korean Society of Agriculture Engineers 55(4): 50-58 (in Korean).
  13. Lee, H. W., J. W. Lee, S. Diop, and O. H. Na, 2014. Measurement of overall heat transfer coefficient of covering material with thermal screens for plastic greenhouse. Acta Hort. 1037: 219-223.
  14. Japan Greenhouse Horticulture Association (JGHA), 1994. Greenhouse horticulture handbook, 170-173. Tokyo, Japan (in Japanese).
  15. Kim, M.G., S. W. Nam, W. M. Suh, Y. C. Yoon, S. G. Lee, and H. W. Lee, 2000. Agricultural structural engineering. Hyangmunsa, Korea (in Korean).
  16. Kim, Y.B., S. Y. Lee, and B. R. Jeong, 2009. Analysis of the insulation effectiveness of the thermal insulator by the installation methods. Journal of Bio-Environmental Control 18(4): 332-340 (in Korean).
  17. Kittas, C., 1994. Determination du coefficient global de transmission de chaleur a travers la paroi d'une serre. [Overall heat transfer coefficient of the greenhouse cover]. Agricultural and Meteorolgy 69: 205-221. https://doi.org/10.1016/0168-1923(94)90026-4
  18. Max, J.F.J., G. Reisinger, T. Hofmann, J. Hinken, H.J. Tantau, A. Ulbrich, S. Lambrecht, B.V. Elsner, and U. Schurr, 2012. Glass-film-combination: Opto-physical properties and energy saving potential of a novel greenhouse glazing system. Energy and Buildings 50: 298-307. https://doi.org/10.1016/j.enbuild.2012.03.051
  19. Minagawa, H., and K. Tachibana, 1982. The overall heat transfer of greenhouses covered with PE and PVC single layer-The heat insulation efficiency of greenhouses and their covering materials (1). J. Agr. Met. 38(1): 15-22 (in Japanese). https://doi.org/10.2480/agrmet.38.15
  20. Ministry of Food, Agriculture, Forestry, and Fisheries (MIFAFF), 2013. Status of vegetable production in South Korea, Korea (in Korean).
  21. Na, W.H., J. W. Lee, S. Diop, and H. W. Lee, 2013. Calculation of night sky temperature according to cloudiness in Daegu. Current Research on Agriculture and Life Sciences 31(1): 40-46 (in Korean).
  22. Nijskens, J., J. Deltour, S. Coutisse, and A. Nisen, 1984. Heat transfer through covering materials of greenhouses. Agricultural and Forest Meteorology, 33: 193-214. https://doi.org/10.1016/0168-1923(84)90070-4
  23. Papadakis, G., D. Briassoulis, G.S Mugnozza, G. Vox, P. Feuilloley J.A Stoffers, 2000. Radiometric and thermal properties of, and testing in methods for, greenhouse covering materials. Journal of Agricultural Engineering Research 77(1): 7-38. https://doi.org/10.1006/jaer.2000.0525
  24. Rural Development Administration (RDA), 2008. Energy saving technology for greenhouse, 1-26. Korea (in Korean).
  25. Seginer, I., D. Kantz, U.M. Peiper, and N. Levav, 1988. Transfer coefficients of several polyethylene greenhouse covers. J. agri. Engng Res. 39: 19 -37. https://doi.org/10.1016/0021-8634(88)90163-1
  26. Ursula, E., and D. Antoine, 2011. Photovoltaic-thermal collectors for night radiative cooling of buildings. Solar Energy 85(7): 1322-1335. https://doi.org/10.1016/j.solener.2011.03.015

Cited by

  1. Development of a model to calculate the overall heat transfer coefficient of greenhouse covers vol.15, pp.4, 2018, https://doi.org/10.5424/sjar/2017154-10777
  2. Evaluation of Overall Heat Transfer Coefficient of Different Greenhouse Thermal Screens Using Building Energy Simulation vol.27, pp.4, 2018, https://doi.org/10.12791/KSBEC.2018.27.4.294