DOI QR코드

DOI QR Code

Analysis of the Degraded Performance and Restoration Plan of Lfieline Systems Considering Interdependency in the Post-disaster

라이프라인 시스템 상호의존성을 고려한 기능 저하 평가 및 복구계획 분석

  • Lee, Seulbi (Department of Architecture and Architectural Engineering, Seoul National University) ;
  • Park, Moonseo (Department of Architecture and Architectural Engineering, Seoul National University) ;
  • Lee, Hyun-Soo (Department of Architecture and Architectural Engineering, Seoul National University) ;
  • Hwang, Sungjoo (Department of Architecture and Architectural Engineering, Seoul National University)
  • Received : 2014.05.08
  • Accepted : 2014.06.11
  • Published : 2014.07.31

Abstract

Lifeline service disruptions can have significant impacts on local community in the aftermath natural disaster. Although effective restoration strategies with accurate damage assessment are required, the internal complexity of lifeline networks and their interdependency makes the understanding restoration process of lifeline systems a difficult issue. Additionally, the limitations of previous research relating the influence assessment of lifeline to community disaster resilience, highlight the need for understanding of lifeline networks. Therefore, this paper presents an agent-based model to discover emergent behavior and evaluate the interdependency and resiliency in lifeline networks. This research will provide basic guideline of resource allocation in order to mitigate cascading failures of the post disaster restoration processes.

재난 이후 라이프라인의 손상은 지역사회 내 공공서비스의 제공을 지연시켜 서비스를 필요로 하는 시설물로 피해를 확산시킬 수 있다. 이에 라이프라인의 정확한 피해 평가를 기반으로 한 신속한 라이프라인의 복구가 요구되고 있으나, 라이프라인 구성요소간의 복잡한 의존관계와 네트워크적 성격으로 인해 복구계획을 수립하는데 어려움이 따른다. 또한 라이프라인의 위험도 평가 및 영향력 분석과 같은 기존의 연구들 역시 라이프라인 구성요소 간의 상호작용을 확인하기에는 한계가 있다. 따라서 본 연구에서는 에이전트 기반 모델을 활용하여 라이프라인 구성요소가 전체 네트워크시스템에 발현하는 연쇄피해효과를 확인하고, 라이프라인 간 상호의존성을 고려한 라이프라인 기능회복 모델을 제시하고자 한다. 이를 통해 전체 네트워크에 파급효과가 큰 라이프라인 구성요소에 우선적으로 복구 자원을 할당할 수 있도록 지원하여, 라이프라인 서비스 공급 중단으로 인한 지역사회의 피해확산을 경감시킬 수 있을 것이라 기대된다.

Keywords

References

  1. American Lifelines Alliance (ALA) of Federal Emergency Management Agency (2006) . "Power Systems, Water, Transportation and Communications Lifeline Interdependencies."
  2. Bonabeau, E. (2002). "Agent-based modeling: Methods and techniques for simulating human systems." Proceedings of the National Academy of Sciences of the United States of America, 99(3), pp. 7280-7287. https://doi.org/10.1073/pnas.082080899
  3. Chang, S. E. and Miles, S. B. (2004). "The dynamics of recovery: A framework.", In: Modeling the spatial economic impact of disasters. Springer-Verlag, USA.
  4. Chou, C. and Tseng, S. (2010). "Collection and Analysis of Critical Infrastructure Interdependency Relationships." J. Comput. Civ. Eng., 24(6), pp. 539-547. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000059
  5. Comfort, L.K. et al. (2004). "Coordination in Rapidly Evolving Disaster Response Systems." American Behavioral Scientists, 48(3), pp. 295-313. https://doi.org/10.1177/0002764204268987
  6. Duenas-Osorio, L. et al. (2007). "Seismic response of critical interdependent networks." Earthquake Engin eering and Structural Dynamics, 36(2), pp. 285-306. https://doi.org/10.1002/eqe.626
  7. Federal Emergency Management Agency (FEMA) (2003). "HAZUS-MH Technical Manual." (Jan., 19, 2014)
  8. Giovinazzi, S. and King, A. (2009). "Estimating Seismic Impacts on Lifelines: An International Review of Risk Scape," Proceedings: 2009 New Zealand Society for Earthquake Engineering Conference.
  9. McDaniels, T. et al. (2007). "Empirical Framework for Characterizing Infrastructure Failure Interdependency." J. Infrastruct. Syst., 13(3), pp. 175-184. https://doi.org/10.1061/(ASCE)1076-0342(2007)13:3(175)
  10. Haimes, Y. and Jiang, P. (2001). "Leontief-Based Model of Risk in Complex Interconnected Infrastructures." J. Infrastruct. Syst., 7(1), pp. 1-12. https://doi.org/10.1061/(ASCE)1076-0342(2001)7:1(1)
  11. Hwang, J. (2008). "The Allocation Precedence of the Limited Same Resource to the Concurrent Activities under Multiple Criteria." Korean journal of Construction Engineering and Management, KICEM, 9(5), pp. 159- 167.
  12. Janssen, M. A. and Ostrom, E. (2006). "Empirically based, agent-based models." Ecology and Society 11(2): p. 37.
  13. Kameda, H. (2000). "Engineering Management of Lifeline Systems Under Earthquake Risk." Proceedings of the 12th World Conference on Earthquake Engineering, IAEE, Tokyo, Japan.
  14. Kanno, T. et al. (2006). "A New Attenuation Relation for Strong Ground Motion in Japan Based on Recorded Data." Bulletin of the Seismological Society of America, 96(3), pp. 879-897. https://doi.org/10.1785/0120050138
  15. Kazama, M. and Noda, T. (2012). "Damage Statistics (Summary of the 2011 off the Pacific Coast of Tohoku Earthquake damage." Soils and Foundations, 52(5), pp. 780-792. https://doi.org/10.1016/j.sandf.2012.11.003
  16. Kim, J. and Cho, Y. (2010). "A Study on the Proposals for Improvement of the National Emergency Management System based on Past Disaster Cases." Korean journal of Construction Engineering and Management, KICEM, 11(5), pp. 24-31. https://doi.org/10.6106/KJCEM.2010.11.5.24
  17. Kuwata, Y. and Ohnishi, Y. (2011). "Emergencyresponse capacity of lifelines after wide-area earthquake disasters." Proc., Int. Symp. on Engineering Lessons Learned from the Great East Japan Earthquake, PEER at UC Berkeley, Berkeley, CA.
  18. Lambert, J. and Patterson, C. (2002). "Prioritization of Schedule Dependencies in Hurricane Recovery of Transportation Agency." Journal of Infrastructure Systems, 8(3), pp. 103-111. https://doi.org/10.1061/(ASCE)1076-0342(2002)8:3(103)
  19. O'Rourke, T. D. (2007). "Critical infrastructure, interdependencies, and resilience." The Bridge: Linking Engineering and Society, 37(1), pp. 22-29.
  20. Peerenboom, J. P. and Fisher, R. E. (2007). "Analyzing Cross-Sector Interdependencies." Proceedings of the 40th Annual Hawaii International Conference on System Sciences, HICSS, Hawaii, USA, pp. 112-119.
  21. Petak, W. (1985). "Emergency Management: A Challenge for Public Administration." Public Administration Review, 45(special issue), pp. 3-7. https://doi.org/10.2307/3134992
  22. Rinaldi, S. M. (2004). "Modeling and Simulating Critical Infrastructures and Their Interdependencies." Proceedings of the 37th Annual Hawaii International Conference on System Sciences, HICSS, Hawaii, USA.
  23. Rose, A. et al. (1997). "The regional economic impact of an earthquake: direct and indirect effects of electricity lifeline disruptions." Journal of Regional Science, 37, pp. 437-458. https://doi.org/10.1111/0022-4146.00063
  24. Sanford Bernhardt and McNeil, S. (2008). "Agent-Based Modeling: Approach for Improving Infrastructure Management." J. Infrastruct. Syst., 14(3), pp. 253-261. https://doi.org/10.1061/(ASCE)1076-0342(2008)14:3(253)
  25. Tohoku Electric Power Company(2011). "Annual Report 2011." (Jan., 13, 2014)
  26. Tsuruta, M. et al. (2008). "Damage Propagation Caused by Interdependency Among Critical Infrastructures." Proceedings of the 14th World Conference on Earthquake Engineering, IAEE, Tokyo, Japan.
  27. Wu, J. and Duen-as-Osorio, L. (2013). "Calibration and validation of a seismic damage propagation model for interdependent infrastructure systems." Earthquake Spectra, 29(3), pp. 1021-1041. https://doi.org/10.1193/1.4000160