DOI QR코드

DOI QR Code

Estimation of Actual Evapotranspiration and Storage Change for the Bokahcheon Upper-middle Watershed

복하천 중상류 유역의 실제증발산량과 저류변화량 산정

  • Lee, Jeongwoo (Water Resources Research Division, Water Resources & Environment Research Department, Korea Institute of Construction Technology) ;
  • Kim, Nam Won (Water Resources Research Division, Water Resources & Environment Research Department, Korea Institute of Construction Technology) ;
  • Lee, Jeong Eun (Water Resources Research Division, Water Resources & Environment Research Department, Korea Institute of Construction Technology)
  • 이정우 (한국건설기술연구원 수자원연구실) ;
  • 김남원 (한국건설기술연구원 수자원연구실) ;
  • 이정은 (한국건설기술연구원 수자원연구실)
  • Received : 2014.03.10
  • Accepted : 2014.06.26
  • Published : 2014.07.31

Abstract

The objectives of this study are to estimate the annual and monthly actual evapotranspiration for the Bokhacheon upper-middle watershed using the data from 1996 to 2012 simulated by SWAT-K model, and to evaluate the effect of storage change on the actual evapotranspiration based on water balance estimates. The simulated results of the annual actual evapotranspiration showed the range from 401 mm to 494 mm and the annual mean of 436 mm, about 31% of the annual mean of precipitation. The average monthly estimates of the actual evapotranspiration showed the range of 10 mm/month in Dec to 84 mm/month in Jul. From the analyses of annual mean storage changes according to data length, it was found out that more than four to five years of data of precipitation and runoff are needed to estimate the watershed based actual evapotranspiration with ignorance of the storage change for this study area. Furthermore, annual and monthly relations between the storage change and the difference of precipitation and runoff were derived which can be effectively used for estimating actual evapotranspiration based on water balance analysis.

본 연구에서는 복하천 중상류 유역에 대해 유역수문모델 SWAT-K를 적용하여 1996년부터 2012년까지의 실제증발산량을 모의하여 연별, 월별 변동 특성을 분석하였으며, 유역물수지법으로 증발산량을 산정할 때 유역의 저류변화량 영향에 대해 고찰하였다. 대상유역의 연도별 실제증발산량은 최소 401mm에서 최대 494mm까지 발생하였고 평균적으로 강수량 대비 약 31%인 436mm 발생하였다. 월단위 실제증발산량은 모의기간동안 평균적으로 12월에 최소값 10mm, 7월에 최대값 84mm 발생한 것으로 분석되었다. 자료기간에 따른 연평균 저류변화량의 크기를 평가한 결과 강수량과 유츨량 자료만을 이용하여 유역물수지법으로 연평균 실제증발산량을 추정하기 위해서는 적어도 약 4~5년의 자료를 이용해야 적절한 것으로 분석되었다. 또한, 연구 대상유역에 대해 저류변화량을 고려하여 유역물수지법으로 연단위, 월단위 실제증발산량을 산정할 수 있도록 강수량에서 유출량을 감한 값과 저류변화량간의 선형의 관계식을 제시하였다.

Keywords

References

  1. Allen, R.G., Pereira, L.S., Raes, L.S., and Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirement. FAO Irrigation and Drainage Paper 56, Food and Agriculture Organization of the United Nations., 300 p.
  2. Arnold, J.G., Allen, P.M., and Bernhardt, G. (1993). "A comprehensive surface groundwater flow model." Journal of Hydrology, Vol. 142, pp. 47-69. https://doi.org/10.1016/0022-1694(93)90004-S
  3. Bastiaanssen, W.G.M. , Noordman, E.J.M., Pelgrum, H., Davids, G., Thoreson, B.P., and Allen, R.G. (2005). "SEBAL model with remotely sensed data to improve water resources management under actual field conditions." Journal of Irrigation and Drainage Engineering, ASCE, Vol. 131, pp. 85-93. https://doi.org/10.1061/(ASCE)0733-9437(2005)131:1(85)
  4. Bouchet, R.J. (1963). "Evapotranspiration reelle et potentielle, signification climatiqe." Int. Assoc. Sci. Hydrol., Proc. Berkeley, Calif. Symp., Publ. 62, pp. 134-142.
  5. Cho, H.K., and Lee, T.Y. (1975). "Evapotranspiration and water balance in the basin of Nakdong River." Journal of Korea Water Resources Association, KWRA, Vol. 8, No. 2, pp. 81-92 (in Korean).
  6. Choi, M., Hwang, K., and Kim, T.W. (2011). "Characteristics of Greenup and Senescence for Evapotranspiration in GyeonganWatershed Using Landsat Imagery." Journal of the Korean Society of Civil Engineers, KSCE, Vol. 31, No. 1B, pp. 29-36 (in Korean).
  7. Fang, Z., Ren, L., Li, Q., Liu, X., Yuan, F., Zhao, D., and Zhu, Q. (2012). "Estimating and validating basin-scale actual evapotranspiration using MODIS images and hydrologic models." Hydrology Research, Vol. 43, pp. 156-166. https://doi.org/10.2166/nh.2011.129
  8. Gao, Y., and Long, D. (2008). "Intercomparison of remote sensing-based models for estimation of evapotranspiration and accuracy assessment based on SWAT." Hydrological Processes, Vol. 22, pp. 4850-4869. https://doi.org/10.1002/hyp.7104
  9. Githui, F., Selle, B., and Thayalakumaran, T. (2012). "Recharge estimation using remotely sensed evapotranspiration in an irrigation catchment in southeast Australia." Hydrological Processes, Vol. 26, pp. 1379-1389. https://doi.org/10.1002/hyp.8274
  10. HA, R., Shin, H.J., Lee, M.S., and Kim, S.J. (2010). "Estimation of spatial evapotranspiration using satellite images and SEBAL model." Journal of the Korean Society of Civil Engineers, KSCE, Vol. 30, No. 3B, pp. 233-242 (in Korean).
  11. HA, R., Shin, H.J., Park, G.A., and Kim, S.J. (2008). "Assessment of MODIS Leaf Area Index (LAI) Influence on the Penman-Monteith Evapotranspiration of SLURP Model." Journal of the Korean Society of Civil Engineers, KSCE, Vol. 28, No. 5B, pp. 495-504 (in Korean).
  12. Hargreaves, G.L., Hargreaves, G.H., and Riley, J.P. (1985). "Agricultural benefits for Senegal River Basin." J. Irrig. and Drain. Engr. Vol. 111, No. 2, pp. 113-124. https://doi.org/10.1061/(ASCE)0733-9437(1985)111:2(113)
  13. Hobbins, M.T., Ramirez, J.A., Brown T.C., and Claessens, L. (2001). "The complementary relationship in estimation of regional evapotranspiration: The Complementary Relationship Areal Evapotranspiration and Advection-Aridity models." Water Resources Research, Vol. 37, No. 5, pp. 1367-1387. https://doi.org/10.1029/2000WR900358
  14. Immerzeel, W.W., and Droogers, P. (2008). "Calibration of a distributed hydrological model based on satellite evapotranspiration." Journal of Hydrology, Vol. 349, pp. 411-424. https://doi.org/10.1016/j.jhydrol.2007.11.017
  15. Jensen, M.E., Burman, R.D., and R.G., Allen (ed). (1990). Evapotranspiration and irrigation water requirements, ASCE Manuals and Reports on Engineering Practice No. 70, ASCE, N.Y. 332 pp.
  16. Kim, B.S., Kim, H.S., and Seoh, B.H. (2004). "Evaluation of the evapotranspiration models in the SLURP hydrological model." Journal of Korea Water Resources Association, KWRA, Vol. 37, No. 9, pp. 745-758 (in Korean). https://doi.org/10.3741/JKWRA.2004.37.9.745
  17. Kim, N.W., and Kim, C.G. (2004a). "Variation of evapotranspiration and runoff with vegetation change in a watershed." 2004 Proceedings of the Korea Water Resources Association Conference, KWRA, pp. 1067-1071 (in Korean).
  18. Kim, N.W., and Kim, C.G. (2004b). Comparison of Penman-Monteith method and Morton CRAE method for estimating areal evapotranspiration. 2004 Proceedings of the Korea Water Resources Association Conference, pp. 1077-1081.
  19. Kim, N.W., and Lee, J.E. (2013). "Assessment of actual evapotranspiration in the Hancheon watershed, Jeju Island." Journal of Environmental Science International, KESS, Vol. 22, No. 5, pp. 533-542 (In Korean). https://doi.org/10.5322/JESI.2013.22.5.533
  20. Kim, N.W., Chung, I.M., Won, Y.S., and Arnold, J.G. (2008). "Development and application of the integrated SWAT-MODFLOW model." Journal of Hydrology, Vol. 356, pp. 1-16. https://doi.org/10.1016/j.jhydrol.2008.02.024
  21. Kim, N.W., Lee, J., and Lee, J.E. (2013). "Estimation of natural streamflow for the Bokhacheon middle-upper watershed." Journal of Korea Water Resources Association, KWRA, Vol. 46, No. 12, pp. 1169-1800 (in Korean). https://doi.org/10.3741/JKWRA.2013.46.12.1169
  22. Kim, N.W., and Lee, J. (2014). "Assessment of Complementary Relationship Evapotranspiration Models for the Bokahcheon Upper-middle Watershed." Journal of Korea Water Resources Association, KWRA, Vol. 47, No. 6, pp. 547-559 (in Korean). https://doi.org/10.3741/JKWRA.2014.47.6.547
  23. Kim, N.W., Won, Y.S., Lee, J., Lee, J.E., and Jeong, J.H. (2011). "Hydrologic impacts of urban imperviousness in White Rock Creek watershed." Transactions of the ASABE, Vol. 54, No. 4, pp. 1759-1771. https://doi.org/10.13031/2013.39848
  24. Knisel, W.G. (1980). CREAMS: A field scale model for chemicals, runoff, and erosion from agricultural management systems. USDA Conservation Research Report, 26.
  25. Lee, B.J., Jung, I.W., and Bae, D.H. (2008). "Analysis of water balance in a watershed according to temperature change." 2008 Proceedings of the Korea Water Resources Association Conference, KWRA, pp. 1048-1052 (in Korean).
  26. Lee, S.J., Kim, J.C., and Noh, J.W. (2010). "Long term runoff simulation for water balance at Dasecheong basin." Journal of the Environmetal Sciences, Vol. 19, No. 10, pp. 1211-1217 (in Korean). https://doi.org/10.5322/JES.2010.19.10.1211
  27. Lemeur, R., and Zhang, L. (1990). "Evaluation of three evapotranspiration models in terms of their applicability for an arid region." Journal of Hydrology, Vol. 114, pp. 395-411. https://doi.org/10.1016/0022-1694(90)90067-8
  28. Liu, S., Sun, R., Sun, Z., Li, X., and Liu, C. (2006). "Evaluation of three complementary relationship approaches for evapotranspiration over the Yellow River basin." Hydrological Processes, Vol. 20, pp. 2347-2361. https://doi.org/10.1002/hyp.6048
  29. Monteith, J.L. (1965). "Evaporation and the environment." The state and movement of water in living organisms, XIXth Symposium. Soc. for Exp. Biol., Swansea, Cambridge University Press. pp. 205-234.
  30. Monteith, J.L. (1981). "Evaporation and surface temperature." Quart. J. Roy. Meteorol. Soc. Vol. 107, pp.1-27. https://doi.org/10.1002/qj.49710745102
  31. Neitsch, S.L., Arnold, J.G., Kiniry, J.R., and Williams, J.R. (2005). Soil and water assessment tool: Theoretical documentation. Version 2005. Temple Tex.: USDAARS Grassland, Soil, and Water Research Laboratory, Blackland Research Center, Texas Agricultural Experiment Station.
  32. Priestley, C.H.B., and Taylor, R.J. (1972). "On the assessment of surface heat flux and evaporation using largescale parameters." Mon.Weather Rev., Vol. 100, pp. 81-92. https://doi.org/10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
  33. Rim, C.S., Lim, G.H., and Yoon, S.E. (2011). "A study on the hydroclimatic effects on the estimation of annual actual evapotranspiration using watershed water balance." Journal of KoreaWater Resources Association, KWRA, Vol. 44, No. 12, pp. 915-928 (in Korean). https://doi.org/10.3741/JKWRA.2011.44.12.915
  34. Ruhoff, A.L., Paz, A.R., Collischonn, W., Aragao, L.E., Rocha, H.R., and Malhi, Y.S. (2012). "A MODIS-based energy balance to estimate evapotranspiration for clear-sky days in Brazilian tropical savannas." Remote Sensing. Vol. 4, pp. 703-725. https://doi.org/10.3390/rs4030703
  35. Shin, S.C. (1996a). "Estimation method of evapotranspiration through vegetation monitoring over wide area." Korean Society of Surveying Geodesy Photogrammetry and Cartography, Vol. 14, No. 1, pp. 81-88 (in Korean).
  36. Shin, S.C. (1996b). "Estimation of water balance based on satellite data in the Korean Peninsula." Journal of Korea Water Resources Association, KWRA, Vol. 29, No. 4, pp. 203-214 (in Korean).
  37. Shin, S.C., Hwang, M.H., Ko, I.H., and Lee, S.J. (2006). "Suggestion of simple method to estimate evapotranspiration using vegetation and temperature information." Journal of Korea Water Resources Association, KWRA, Vol. 39, No. 4, pp. 363-372 (in Korean). https://doi.org/10.3741/JKWRA.2006.39.4.363
  38. Shin, S.C., Sawamoto M., and Kim, C.H. (1995). "Estimation of evapotranspiration using NOAA-AVHRR data." Journal of Korea Water Resources Association, KRWA, Vol. 28, No. 1, pp. 71-79 (in Korean).
  39. Sun, C., Jiang, D., Wang, J., and Zhu, Y. (2010). "A new approach to accurate validation of remote sensing retrieval of evapotranspiration based on data fusion." Hydrology and Earth System Sciences Discussions, Vol. 7, pp. 1745-1784. https://doi.org/10.5194/hessd-7-1745-2010
  40. Sur, C., Lee, J., Park, J., and Choi, M. (2012). "Spatial estimation of Priestley-Taylor based potential evapotranspiration using MODIS imageries: the Nak-dong river basin." Korean Journal of Remote Sensing, Vol. 28, No. 5, pp. 521-529 (in Korean). https://doi.org/10.7780/kjrs.2012.28.5.5
  41. Xu, C.-Y., and Singh, V.P. (2005). "Evaluation of three complementary relationship evapotranspiration models by water balance approach to estimate actual regional evapotranspiration in different climatic regions." Journal of Hydrology, Vol. 308, pp. 105-121. https://doi.org/10.1016/j.jhydrol.2004.10.024
  42. Yang, H. (2007). "Water balance change of watershed by climate change." The Korean Geographical Society, Vol. 42, No. 3, pp. 405-420 (in Korean).
  43. Zhang, Y.Q., Chiew, F.H.S., Zhang, L., Cleugh, H.A., Leuning, R., Oxley, L., and Kulasiri, D. (2007). Validation of MODIS-based annual actual evapotranspiration against water balance estimates in Murray-Darling Basin. Proceedings of the Modsim 2007: International Congress on Modelling and Simulation, pp. 2639-2644.

Cited by

  1. One-month lead dam inflow forecast using climate indices based on tele-connection vol.49, pp.5, 2016, https://doi.org/10.3741/JKWRA.2016.49.5.361
  2. Landuse oriented Water Balance Analysis Method by the Hydrological Model BAGLUVA based on Soil and Vegetation vol.43, pp.4, 2015, https://doi.org/10.9715/KILA.2015.43.4.098