참고문헌
- Bhattacharya, R. N. (1982). On the functional central limit theorem and the law of the iterated logarithm for Markov processes, Z. Wahrscheinlichkeitstheorie verw. Gebiete, 60, 185-201. https://doi.org/10.1007/BF00531822
- Bollerslev, T. (1986). Generalized autoregressive conditional heteroscedasticity, Journal of Econometrics, 31, 307-327. https://doi.org/10.1016/0304-4076(86)90063-1
- Donati-Martin, C., Ghomrasni, R. and Yor, M. (2001). On certain Markov processes attached to exponential functionals of Brownian motion; application to Asian options, Revista Mathmatica Iberoamericana, 17, 179-193.
- Doukhan, P. (1994). Mixing: Properties and Examples, Springer, New York.
- Duan, J. C. (1997). Augmented GARCH(p, q) process and its diffusion limit, Journal of Econometrics, 79, 97-127. https://doi.org/10.1016/S0304-4076(97)00009-2
- Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of U.K. inflation, Econometrica, 50, 987-1008. https://doi.org/10.2307/1912773
- Fasen, V. (2010). Asymptotic results for sample autocovariance functions and extremes of integrated generalized Ornstein-Uhlenbeck processes, Bernoulli, 16, 51-79. https://doi.org/10.3150/08-BEJ174
- Kallsen, J. and Vesenmayer, B. (2009). COGARCH as a continuous time limit of GARCH(1, 1), Stochastic Processes and Their Applications, 119, 74-98. https://doi.org/10.1016/j.spa.2007.12.008
- Kluppelberg, C., Lindner, A. and Maller, R. A. (2004). A continuous time GARCH process driven by a Levy process: Stationarity and second order behavior, Journal of Applied Probability, 41, 601-622. https://doi.org/10.1239/jap/1091543413
- Kluppelberg, C., Lindner, A. and Maller, R. A. (2006). Continuous time volatility modelling: COGARCH versus Ornstein-Uhlenbeck models, in Kabanov, Y., Liptser, R. and Stoyanov, J. (Eds.), Stochastic Calculus to Mathematical Finance, Springer, Berlin, 393-419.
- Lee, O. (2012a). V-uniform ergodicity of a continuous time asymmetric power GARCH(1, 1) model, Statistics and Probability Letters, 82, 812-817. https://doi.org/10.1016/j.spl.2012.01.006
-
Lee, O. (2012b). Exponential ergodicity and
${\beta}$ -mixing property for generalized Ornstein-Uhlenbeck processes, Theoretical Economics Letters, 2, 21-25. https://doi.org/10.4236/tel.2012.21004 - Lindner, A. (2009). Continuous time approximations to GARCH and stochastic volatility models, in Andersen, T.G., Davis, R.A., Kreiss, J.P. and Mikosch, T.(Eds.), Handbook of Financial Time Series, Springer, Berlin, 481-496.
- Maller, R. A., Muller, G. and Szimayer, A. (2008). GARCH modelling in continuous time for irregularly spaced time series data, Bernoulli, 14, 519-542. https://doi.org/10.3150/07-BEJ6189
- Meyn, S. P. and Tweedie, R. L. (1993). Markov Chain and Stochastic Stability, Springer-Verlag, Berlin.
- Nelson, D. B. (1990). ARCH models as diffusion approximations, Journal of Econometrics, 45, 7-38. https://doi.org/10.1016/0304-4076(90)90092-8
- Protter, P. (2005). Stochastic Integration and Differential Equations, Springer, New York.
- Sato, K. (1999). Levy Processes and Infinitely Divisible Distributions, Cambridge University Press, Cambridge.
- Tuominen, P. and Tweedie, R. L. (1979). Exponential decay and ergodicity of general Markov processes and their discrete skeletons, Advances in Applied Probability, 11, 784-803. https://doi.org/10.2307/1426859