Acknowledgement
Supported by : Hongik University
References
- Basu, U. (2009), "Explicit finite element perfectly matched layer for transient three-dimensional elastic waves" Int. J. Numer. Method. Eng., 77, 151-176. https://doi.org/10.1002/nme.2397
- Basu, U. and Chopra, A.K. (2004), "Perfectly matched layers for transient elastodynamics of unbounded domains" , Int. J. Numer. Method. Eng., 59, 1039-1074. https://doi.org/10.1002/nme.896
- Becache, E., Joly, P. and Tsogka, C. (2002) "A new family of mixed finite elements for the linear elastodynamic problem" SIAM J. Numer. Anal., 39(6), 2109-2132. https://doi.org/10.1137/S0036142999359189
- Berenger, J.P. (1994), "A perfectly matched layer for the absorption of electromagnetic waves" J. Comput. Phys., 114(2), 185-200. https://doi.org/10.1006/jcph.1994.1159
- Brezzi, F. and Bathe, K.J. (1990) "A discourse on the stability conditions for mixed finite element formulations" Comput. Method. Appl. Mech. Eng., 82, 27-57. https://doi.org/10.1016/0045-7825(90)90157-H
- Chew, W.C. and Liu, Q.H. (1996), "Perfectly matched layers for elastodynamics: a new absorbing boundary condition" J. Comput. Acoust., 4(4), 341-359. https://doi.org/10.1142/S0218396X96000118
- Chew, W.C. and Weedon, W.H. (1994), "A 3D perfectly matched medium from modified Maxwell's equations with stretched coordinates" Microw. Opt. Tech. Lett., 7(13), 599-604. https://doi.org/10.1002/mop.4650071304
- Drossaert, F.H. and Giannopoulos, A. (2007), "Complex frequency shifted convolution PML for FDTD modelling of elastic waves" Wave Motion, 44(7-8), 593-604. https://doi.org/10.1016/j.wavemoti.2007.03.003
- Frasca, L.P., Hughes, T.J.R., Loula, A.F.D. and Miranda, I. (1988) "A new family of stable elements for nearly incompressible elasticity based on a mixed Petrov-Galerkin finite element formulation" Numerische Mathematik, 53, 123-141. https://doi.org/10.1007/BF01395881
- Hastings, F.D., Schneider, J.B. and Broschat, S.L. (1996), "Application of the perfectly matched layer (PML) absorbing boundary condition to elastic wave propagation" J. Acoust. Soc. Am., 100(5), 3061-3069. https://doi.org/10.1121/1.417118
- Kang, J.W. and Kallivokas, L.F. (2010), "Mixed unsplit-field perfectly-matched-layers for transient simulations of scalar waves in heterogeneous domains" Comput. Geosci., 14, 623-648. https://doi.org/10.1007/s10596-009-9176-4
- Komatitsch, D. and Tromp, J (2003), "A perfectly matched layer absorbing boundary condition for the second-order seismic wave equation" Geophys. J. Int., 154, 146-153. https://doi.org/10.1046/j.1365-246X.2003.01950.x
- Madsen, S.S., Krenk, S. and Hededal, O. (2013), "Perfectly matched layer (PML) for transient wave propagation in a moving frame of reference" Proceedings of the 4th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering (COMPDYN 2013), Kos Island, Greece, June.
- Mahmoud, A. and Luo, Y (2009), "Application of a Perfectly Matched Layer Boundary Condition to Finite Element Modeling of Elastic Wave Scattering in Cracked Plates" Adv. Theor. Appl. Mech., 2(2), 75-92.
- Mahmoud, A., Rattanawangcharoen, N., Luo, Y. and Wang, Q. (2010) "FE-PML modeling of 3D scattering of transient elastic waves in cracked plate with rectangular cross section" Int. J. Struct. Stab. Dyn., 10(5), 1123-1139. https://doi.org/10.1142/S0219455410003932
- Martin, R., Komatitsch, D. and Gedney, S.D. (2008) "A variational formulation of a stabilized unsplit convolutional perfectly matched layer for the isotropic or anisotropic seismic wave equation" Comput. Model. Eng. Sci., 37(3), 274-304.
- Martin, R., Komatitsch, D., Gedney, S.D. and Bruthiaux, E. (2010) "A high-order time and space formulation of the unsplit perfectly matched layer for the seismic wave equation using auxiliary differential equations (ADE-PML)" Comput. Model. Eng. Sci., 56(1), 17-40.
- Matzen, R. (2011), "An efficient finite element time-domain formulation for the elastic second-order wave equation: A non-split complex frequency shifted convolutional PML" Int. J. Numer. Method. Eng., 88(10), 951-973. https://doi.org/10.1002/nme.3205
- Sagiyama, K., Govindjee, S. and Persson, P.O. (2013), "An Efficient Time-Domain Perfectly Matched Layers Formulation for Elastodynamics on Spherical Domains" Report No. UCB/SEMM-2013/09, University of California at Berkeley, Berkeley, California, USA.
- Teixeira, F.L. and Chew, W.C. (2000), "Complex space approach to perfectly matched layers: a review and some new developments" Int. J. Numer. Model., 13, 441-455. https://doi.org/10.1002/1099-1204(200009/10)13:5<441::AID-JNM376>3.0.CO;2-J
- Turkel, E. and Yefet, A. (1998) "Absorbing PML boundary layers for wave-like equations" Appl. Numer. Math., 27, 533-557. https://doi.org/10.1016/S0168-9274(98)00026-9
- Xu, B.Q., Tsang, H.H. and Lo, S.H. (2013), "3-D convolutional perfectly matched layer models for dynamic soil-structure interaction analysis in the finite element time-domain" Proceedings of the 4th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering (COMPDYN 2013), Kos Island, Greece, June.
Cited by
- Modeling of SH-waves in a fiber-reinforced anisotropic layer vol.10, pp.1, 2016, https://doi.org/10.12989/eas.2016.10.1.091
- A Gauss–Newton full-waveform inversion in PML-truncated domains using scalar probing waves vol.350, 2017, https://doi.org/10.1016/j.jcp.2017.09.017
- A Time-Domain Formulation of Elastic Waves in Heterogeneous Unbounded Domains vol.1, pp.3, 2019, https://doi.org/10.1007/s42493-019-00019-z
- Material profile reconstruction using plane electromagnetic waves in PML-truncated heterogeneous domains vol.96, pp.None, 2021, https://doi.org/10.1016/j.apm.2021.03.026