DOI QR코드

DOI QR Code

Relaxed Saint-Venant principle for thermoelastic micropolar diffusion

  • Marin, Marin (Department of Mathematics, Transilvania University of Brasov) ;
  • Abbas, Ibrahim (Department of Mathematics, King Abdulaziz University) ;
  • Kumar, Rajneesh (Department of Mathematics, Kurukshetra University)
  • Received : 2014.03.07
  • Accepted : 2014.06.19
  • Published : 2014.08.25

Abstract

The main goal of this study is to extend the domain of influence result to cover the micropolar thermoelastic diffusion. So, we prove that for a finite time t>0 the displacement field $u_i$, the microrotation vector ${\varphi}_i$, the temperature ${\theta}$ and the chemical potential P generate no disturbance outside a bounded domain $B_t$.

Keywords

References

  1. Abbas, I.A. and Othman, M.I. (2012a), "Generalized thermoelsticity of thermal shock problem in an isotropic hollow cylinder and temperature dependent elastic moduli" Chin. Phys. B, 21(1), 0146011-0146016.
  2. Abbas, I.A. (2012), "Generalized magneto-thermoelastic interaction in a fiber-reinforced anisotropic hollow cylinder" Int. J. Thermophy., 33(3), 567-579. https://doi.org/10.1007/s10765-012-1178-0
  3. Abbas, I.A. and Othman, M.I. (2012b), "Generalized thermoelasticity of thermal shock problem in a nonhomogeneous isotropic hollow cylinderwith energy dissipation" Int. J. Thermophy., 33(5), 913-923. https://doi.org/10.1007/s10765-012-1202-4
  4. Abbas, I.A. and Kumar, R. (2013), "Deformation due to thermal source in micropolar elastic media with thermal and conductive temperatures" J. Comput. Theor. Nanosci., 10(9), 2241-2247. https://doi.org/10.1166/jctn.2013.3193
  5. Aouadi, M. (2009), "The coupled theory of micropolar thermoelastic diffusion" Acta Mechanica, 208, 181-203. https://doi.org/10.1007/s00707-008-0137-0
  6. Aouadi, M. (2010), "A theory of thermoelastic diffusion materials with voids" Z. Angew. Math. Phys., 61,357-379 https://doi.org/10.1007/s00033-009-0016-0
  7. Carbonaro, B. and Russo, R. (1984), "Energy inequalities in classical elastodynamics" J. Elasticity, 14, 163-174. https://doi.org/10.1007/BF00041663
  8. Chirita, S. and Ciarletta, M. (2007), "On the strong ellipticity of the anisotropic linearly elastic materials" J. Elasticity, 87(1), 1-27. https://doi.org/10.1007/s10659-006-9096-7
  9. Hetnarski, R. and Ignaczak, J. (1999), "Generalized thermoelasticity" J. Thermal Stresses, 22, 451-476. https://doi.org/10.1080/014957399280832
  10. Kim, D.K., Yu, S.Y. and Choi, H.S. (2013), "Condition assessment of raking damaged bulk carriers under vertical bending moments" Struct. Eng. Mech., 46(5), 629-644. https://doi.org/10.12989/sem.2013.46.5.629
  11. Kumar, R., Gupta, V. and Abbas, I.A. (2013), "Plane deformation due to thermal source in fractional order thermoelastic media" J. Comput. Theor. Nanosci., 10(10), 2520-2525. https://doi.org/10.1166/jctn.2013.3241
  12. Marin, M (1994), "The Lagrange identity method in thermoelasticity of bodies with microstructure" Int. J. Engng. Sci., 32(8), 1229-1240. https://doi.org/10.1016/0020-7225(94)90034-5
  13. Marin, M. and Marinescu, C. (1998), "Thermoelasticity of initially stressed bodies, asymptotic equipartition of energies" Int. J. Eng. Sci., 36(1), 73-86. https://doi.org/10.1016/S0020-7225(97)00019-0
  14. Marin, M. (2010a), "A partition of energy in thermoelsticity of microstretchbodies" Nonlin. Anal., RWA, 11(4), 2436-2447. https://doi.org/10.1016/j.nonrwa.2009.07.014
  15. Marin, M. (2010b), "Some estimates on vibrations in thermoelasticity ofdipolar bodies" J. Vib. Control, 16(1), 33-47 https://doi.org/10.1177/1077546309103419
  16. Marin, M., Agarwal, R.P. and Mahmoud, S.R. (2013), "Modeling a microstretch thermoelastic body with two temperature" Abstract and Applied Analysis, doi: 10.1155/2013/583464.
  17. Nowacki, W. (1974a), "Dynamical problems of thermoelastic diffusion in solids I" Bull. Acad. Pol. Sci. Ser. Tech., 22, 55-64
  18. Nowacki, W. (1974b), "Dynamical problems of thermoelastic diffusion insolids II" Bull. Acad. Pol. Sci. Ser. Tech, 22, 129-135.
  19. Nowacki, W. (1976), "Dynamical problems of diffusion in solids" Eng. Fract. Mech., 8, 261-266. https://doi.org/10.1016/0013-7944(76)90091-6
  20. Sherif, H.H., Hamza, F. and Salex, H. (2004), "The theory of generalizedthermoelastic diffusion" Int. J. Eng. Sci., 42, 591-608. https://doi.org/10.1016/j.ijengsci.2003.05.001
  21. Takabatake, H. (2012), "Effects of dead loads on the staticanalysis of plates" Struct. Eng. Mech., 42(6), 761-781. https://doi.org/10.12989/sem.2012.42.6.761

Cited by

  1. On a generalized relaxed Saint–Venant principle vol.2018, pp.1, 2018, https://doi.org/10.1186/s13661-018-1031-x
  2. Effect of microtemperatures for micropolar thermoelastic bodies vol.61, pp.3, 2014, https://doi.org/10.12989/sem.2017.61.3.381
  3. $ n$ -Dimensional Fractional Frequency Laplace Transform by the Inverse Difference Operator vol.2020, pp.None, 2014, https://doi.org/10.1155/2020/6529698
  4. Thermo-mechanical memory responses of biological viscoelastic tissue with variable thermal material properties vol.31, pp.1, 2014, https://doi.org/10.1108/hff-03-2020-0182