DOI QR코드

DOI QR Code

Large displacement geometrically nonlinear finite element analysis of 3D Timoshenko fiber beam element

  • Hu, Zhengzhou (Department of Building Engineering, Tongji University) ;
  • Wu, Minger (Department of Building Engineering, Tongji University)
  • 투고 : 2013.03.01
  • 심사 : 2014.05.27
  • 발행 : 2014.08.25

초록

Based on continuum mechanics and the principle of virtual displacements, incremental total Lagrangian formulation (T.L.) and incremental updated Lagrangian formulation (U.L.) were presented. Both T.L. and U.L. considered the large displacement stiffness matrix, which was modified to be symmetrical matrix. According to the incremental updated Lagrangian formulation, small strain, large displacement, finite rotation of three dimensional Timoshenko fiber beam element tangent stiffness matrix was developed. Considering large displacement and finite rotation, a new type of tangent stiffness matrix of the beam element was developed. According to the basic assumption of plane section, the displacement field of an arbitrary fiber was presented in terms of nodal displacement of centroid of cross-area. In addition, shear deformation effect was taken account. Furthermore, a nonlinear finite element method program has been developed and several examples were tested to demonstrate the accuracy and generality of the three dimensional beam element.

키워드

과제정보

연구 과제 주관 기관 : Natural Science Foundation of China

참고문헌

  1. Argyris, J.H., Boni, B., Hindenlang, U. and Kleiber, M. (1982), "Finite element analysis of two- and threedimensional elasto-plastic frames- the natural approach" Comput. Meth. Appl. Mech. Eng., 35(2), 221-248. https://doi.org/10.1016/0045-7825(82)90135-9
  2. Bathe, K.J. (1982), Finite Element Procedures in Engineering Analysis, Prentice-Hall, New Jersey, USA.
  3. Bathe, K.J. and Bolourch, I.S. (1979), "Large displacement analysis of three-dimensional beam structures" Int. J. Numer. Meth. Eng., 14(7), 961-986. https://doi.org/10.1002/nme.1620140703
  4. Bathe, K.J., Ramm. E. and Wilson. E.L. (1975), "Finite element formulations for large deformation dynamic analysis" Int. J. Numer. Meth. Eng., 9(2), 353-386. https://doi.org/10.1002/nme.1620090207
  5. Bathe, K.J. and Wilson, E.L. (1974), "Nonsap-a nonlinear structural analysis program" Nucl. Eng. Des., 29(2), 266-293. https://doi.org/10.1016/0029-5493(74)90128-9
  6. Bazoune, A., Khulief, Y.A. and Stephen, N.G. (2003), "Shape functions of three-dimensional Timoshenko beam element" J. Sound. Vib., 259(2), 473-480. https://doi.org/10.1006/jsvi.2002.5122
  7. Belytschko, T. and Hsieh, B.J. (1973), "Non-linear transient finite element analysis with convected coordinates" Int. J. Numer. Meth. Eng., 7(3), 255-271. https://doi.org/10.1002/nme.1620070304
  8. Cai, Y.C. and Atluri, S.N. (2012), "Large rotation analyses of plate/shell structures based on the primal variational principle and a fully nonlinear theory in the updated Lagrangian co-rotational reference frame" CMES-Comp. Model. Eng., 83(3), 49-273.
  9. Chu, K.H. and Rampetsreiter, R.H. (1972), "Large deflection buckling of space frames" J. Struct. Div., 98(12), 2701-2722.
  10. Crisfield, M.A. (1983), "An arc-length method including line searches and accelerations" Int. J. Numer. Meth. Eng., 19(9), 1269-1289. https://doi.org/10.1002/nme.1620190902
  11. Crisfield, M.A. and Moita. G.F. (1996), "A unified co-rotational frame work for solids, shells and beams" Int. J. Solid. Struct., 33(20-22), 2969-2992. https://doi.org/10.1016/0020-7683(95)00252-9
  12. Crivelli, L.A. and Felippa, C.A. (1993), "A three dimensional nonlinear Timoshenko beam based on the core-congruential formulation" Int. J. Numer. Meth. Eng., 36(21), 3647-3673. https://doi.org/10.1002/nme.1620362106
  13. Eduardo, N.D., Eugenio, O. and Javier, O. (1988), "On a non-linear formulation for curved Timoshenko beam elements considering large displacement/rotation increments" Int. J. Numer. Meth. Eng., 26(7), 1597-1613. https://doi.org/10.1002/nme.1620260710
  14. Griggs, H.P. (1996), "Experimental study of instability in elements of shallow space frames" Research Reprot, Dept. of Civil Eng, MIT, Cambridge, USA.
  15. Hibbitt, H.D., Marcal, P.V. and Rice, J.R. (1970), "A finite element formulation for problems of large strain and large displacement" Int. J. Solid. Struct., 6(8), 1069-1086. https://doi.org/10.1016/0020-7683(70)90048-X
  16. Huu, T.T. and Seung, E.K. (2011a), "Second-order inelastic dynamic analysis of steel frames using fiber hinge method" J. Constr. Steel Res., 67(10), 1485-1494. https://doi.org/10.1016/j.jcsr.2011.03.022
  17. Huu, T.T. and Seung, E.K. (2011b), "Nonlinear inelastic analysis of concrete-filled steel tubular frames" J. Constr. Steel Res., 67(12), 1797-1805. https://doi.org/10.1016/j.jcsr.2011.05.004
  18. Huu, T.T. and Seung, E.K. (2012), "Second-order inelastic analysis of cable-stayed bridges" Finite Elem. Anal. Des., 53, 48-55. https://doi.org/10.1016/j.finel.2011.07.002
  19. Li, Y., Lu, X.Z., Ye, L.P. and Ren, A.Z. (2012), "Numerical models of fire induced progressive collapse analysis for reinforced concrete frame structures" Eng. Mech., 29(4), 96-103.
  20. Li, Z.X., Liu, Y.F., Izzuddin, B.A. and Vu-Quoc, L.A. (2011), "Stabilized co-rotational curved quadrilateral composite shell element" Int. J. Numer. Meth. Eng., 86(8), 975-999. https://doi.org/10.1002/nme.3084
  21. Li, Z.X. and Izzuddin, B.A. (2011), "A mixed co-rotational curved quadrilateral shell element" Int. J. Struct. Eng., 2(2), 188-208. https://doi.org/10.1504/IJSTRUCTE.2011.039423
  22. Meek, J.L. and Tan, H.S. (1984), "Geometrically nonlinear analysis of space frames by an incremental iterative technique" Comput. Meth. Appl. Mech. Eng., 47(3), 261-282. https://doi.org/10.1016/0045-7825(84)90079-3
  23. Nie, J.G. and Wang, Y.H. (2012), "Development and application of steel-concrete composite fiber beam model in ABAQUS platform" Eng. Mech., 29(1), 70-80.
  24. Nour-Omid, B. and Rankin, C.C. (1991), "Finite rotation analysis and consistent linearization using projectors" Comput. Meth. Appl. Mech. Eng., 93(3), 353-384. https://doi.org/10.1016/0045-7825(91)90248-5
  25. Oran, C. (1973), "Tangent stiffness in space frames" J. Struct. Div., 99(6), 987-1001.
  26. Papadrakakis, M. (1981), "Post-buckling analysis of spatial structures by vector iteration methods" Comput. Struct., 14(5-6), 393-402. https://doi.org/10.1016/0045-7949(81)90059-6
  27. Park, M.S. and Lee, B.C. (1998), "Geometrically non-linear and elastoplastic three dimensional shear flexible beam element of von-mises-type hardending material" Int. J. Numer. Meth. Eng., 39(3), 383-408.
  28. Pramin, N., Songsak, S. and Ki, K. (2012), "A co-rotational 8-node degenerated thin-walled element with assumed natural strain and enhanced assumed strain" Finite Elem. Anal. Des., 50, 70-85. https://doi.org/10.1016/j.finel.2011.08.023
  29. Riks, E. (1979), "An incremental approach to the solution of snapping and buckling problems" Int. J. Solid. Struct., 15(7), 529-551. https://doi.org/10.1016/0020-7683(79)90081-7
  30. Schulz, M. and Filippou, F.C. (2001), "Non-linear spatial Timoshenko beam element with curvature interpolation" Int. J. Numer. Meth. Eng., 50(4), 761-785. https://doi.org/10.1002/1097-0207(20010210)50:4<761::AID-NME50>3.0.CO;2-2
  31. Shi, G. and Atluri, S.N. (1988), "Elasto-plastic large deformation analysis of space-frames: a plastic-hinge and stress-based explicit derivation of tangent stiffnesses" Int. J. Numer. Meth. Eng., 26(3), 589-615. https://doi.org/10.1002/nme.1620260306
  32. Spacone, E., Filippou, F.C. and Taucer, F.F. (1996a), "Fiber beam-column model for nonlinear analysis of R/C frames: part I. Formulation" Earthq. Eng. Struct., 25(7), 711-725. https://doi.org/10.1002/(SICI)1096-9845(199607)25:7<711::AID-EQE576>3.0.CO;2-9
  33. Spacone, E., Filippou, F.C. and Taucer, F.F. (1996b), "Fiber beam-column model for nonlinear analysis of R/C frames: part II. Applications" Earthq. Eng Struct, 25(7), 727-742. https://doi.org/10.1002/(SICI)1096-9845(199607)25:7<727::AID-EQE577>3.0.CO;2-O
  34. Taucer, F.F., Spacone, E. and Filippou, F.C. (1991), "A Fiber Beam-Column Element for Seismic Response Analysis of Reinforced Concrete Structures" EERC Report 91/17, Earthquake Engineering Research Center, University of California.
  35. Tort, C. and Hajjar, J. (2010), "Mixed finite element for three-dimensional nonlinear dynamic analysis of rectangular concrete-filled steel tube beam-columns" J. Eng. Mech., 136(11), 1329-1339. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000179
  36. Yang, Y.B. (1994), Theory and Analysis of Nonlinear Framed Structures, Prentice-Hall, New Jersey, USA.
  37. Watson, L.T. and Holzer, S.M. (1984), "Quadratic convergence of crisfield's method" Comput. Struct., 17(1), 69-72.
  38. William, F.W. (1964), "An approach to the non-linear behaviour of the members of a rigid jointed plane framework with finite deflections" Q. J. Mech. Appl. Math., 17(4), 451-469. https://doi.org/10.1093/qjmam/17.4.451
  39. Zeris, C.A. and Mahin, S.A. (1988), "Analysis of reinforced concrete beam-columns under uniaxial excitation" J. Struct. Eng., 114(4), 804-820. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:4(804)
  40. Zeris, C.A. and Mahin, S.A. (1991), "Behavior of reinforced concrete structures subjected to biaxial excitation" J. Struct. Eng., 117(9), 2657-2673. https://doi.org/10.1061/(ASCE)0733-9445(1991)117:9(2657)
  41. Zhang, L.X., Xu, G.L. and Bai, Y.S. (2011), "Fiber model based on Timoshenko beam theory and its application" Adv. Sci. Lett., 4(4-5), 1886-1888. https://doi.org/10.1166/asl.2011.1675
  42. Zubydan, A.H. and ElSabbagh, A.I. (2011), "Monotonic and cyclic behavior of concrete-filled steel-tube beam-columns considering local buckling effect" Thin Wall. Struct., 49(4), 465-481. https://doi.org/10.1016/j.tws.2010.12.007